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ABSTRACT 

The primary focus of the doctoral research presented herein has been the integration 

of temperature control into electrochemically modulated liquid chromatography (EMLC). 

The combination of temperature control and the tunable characteristics of carbonaceous 

EMLC stationary phases have been invaluable in deciphering the subtleties of the retention 

mechanism. The effects of temperature and Eapp on the retention of several naphthalene 

disulfonates were therefore examined by the van't Hoff relationship. The results indicate that 

while the retention of both compounds is exothermic at levels comparable to that in many 

reversed-phase separations, the potential dependence of the separation is actually entropically 

affected in a manner paralleling that of several classical ion exchange systems. Furthermore, 

the retention of small inorganic anions at constant temperature also showed evidence of an 

ion exchange type of mechanism. While a more complete mechanistic description will come 

from examining the thermodynamics of retention for a wider variety of analytes, this research 

has laid the groundwork for full exploitation of temperature as a tool to develop retention 

rules for EMLC. 

Operating EMLC at elevated temperature and flow conditions has decreased analysis 

time and has enabled the separation of analytes not normally achievable on a carbon 

stationary phase. The separation of several aromatic sulfonates was achieved in less than 1 

min, a reduction of analysis time by more than a factor of 20 as compared to room 

temperature separations. The use of higher operating temperatures also facilitated the 

separation of this mixture with an entirely aqueous mobile phase in less than 2 min. This 

methodology was extended to the difficult separation of polycyclic aromatic hydrocarbons on 
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PGC. This study also brought to light the mechanistic implications of the unique retention 

behavior of these analytes through variations of the mobile phase composition. 
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CHAPTER 1. GENERAL INTRODUCTION 

This dissertation describes the application of electrochemically modulated liquid 

chromatography (EMLC) to a variety of separation challenges and advances a fi|ndamental 

understanding of the processes driving retention on carbon stationary phases. In recent years, 

EMLC has emerged as a powerful separation technique applicable to different categories of 

analytes using the same stationary phase,1'2 the development of which is described below. 

To date, this research has primarily focused on the utility of EMLC as a separation 

technique3"8 and on improvements to column design.9 Very little has been done to advance a 

thorough mechanistic understanding of EMLC-based retention.10"13 

Several of the projects described in this dissertation revolve around incorporating 

temperature control into the function of EMLC. Temperature is used in high performance 

liquid chromatography (HPLC) both as a means of determining the thermodynamics of the 

separation process and of enhancing the speed of the separation. The work described herein 

employs temperature in EMLC for both purposes. Each chapter following the general 

introduction is a manuscript submitted for publication. 

Literature Review 

HPLC has become one of the most used techniques in chemical analysis because a 

variety of complex mixtures can be separated based on subtle differences in interactions 

between mobile and stationary phases.14'15 However, separations of different categories of 

analytes typically require compositionally different stationary phases. For example, 

resolution of aliphatic or aromatic compounds can be achieved on a reversed-phase silica 
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packing, but inorganic ions require an ion exchange material. Once an appropriate stationary 

phase is selected, changes in mobile phase composition, either with isocratic or gradient 

elution strategies are often used to enhance resolution and decrease elution time. 

Development of EMLC. In EMLC, conductive stationary phases like glassy carbon 

(GC) and porous graphitic carbon (PGC) are packed into an HPLC column that is also 

configured to function as a three-electrode electrochemical cell. As such, the packing acts 

both as a chromatographic stationary phase and a high surface area working electrode. This 

dual function results in the unique ability to manipulate the surface charge density of the 

conductive packing through changes in applied potential (Eapp), which in turn, alters analyte 

retention. EMLC can therefore be viewed as an approach for fine tuning separations by 

changes in the effective composition of the stationary phase. 

The design of the EMLC column is shown in Figure 1.9 A conductive stationary 

phase, such as GC or PGC, is packed inside a Nafion™ cation-exchange membrane that has 

been inserted in tubular form into a porous stainless steel column. In addition to serving as a 

rigid column support, the porous stainless steel housing acts as a high surface area auxiliary 

electrode. The Nafion™ tubing functions as: (1) a container for the carbon stationary phase, 

(2) an electronic insulator between working and auxiliary electrode, and (3) a salt bridge for 

ion transport. An Ag/AgCl (saturated NaCl) electrode, a reference for Eapp, is placed in a 

reservoir surrounding the auxiliary electrode. 

The development of EMLC can be traced back to the 1960s where flowing 

electrolytic cells were used to separate metal cations in water.16"20 These separations relied 

on the deposition and subsequent stripping of metals from the working electrode, 
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Figure 1. Column design for electrochemically modulated liquid chromatography. 



www.manaraa.com

4 

an on-off mechanism rather than an equilibrium partitioning mechanism. The metal ions 

were deposited (reduced) at one potential and then stripped by stepping the potential to 

remove (oxidize) each metal individually. The deposition/stripping method was extended in 

the 1970s to the separation of organic compounds via electrostatic control of analyte 

adsorption, i.e., electrosorption, rather than electron transfer.21"23 

A major advancement was developed by Antrim et al.24,25 through the use of a 

stainless steel column housing that was capable of withstanding higher pressures, making the 

separation more akin to HPLC. Using this column design, they examined different fixed 

potentials and monitored the change in the retention of neutral organic compounds. By 

functioning at different values of Eapp, the equilibrium distribution of the analyte is altered, 

which thereby affects retention. The retention described in this example is then, a 

manipulation of a partitioning mechanism, unlike the previous examples based on 

deposition/stripping concepts. A significant drawback of this design was the extremely poor 

chromatographic efficiencies found in the separation (2-10 theoretical plates).24,25 

Another direction in the development of EMLC was the use of electroactive ionomers 

(polymers with both electroactive and ion exchange functionalities) coated onto carbon 

particles. In the reduced form, the electroactive site on the ionomer is neutral, therefore the 

ion-exchange site will uptake mobile phase cations. In the oxidized form, the electroactive 

site is positive and there is charge compensation between the electroactive site and ion-

exchange site, resulting in the release of the cations. This retention mechanism is another 

example of an on-off methodology.26 

Conducting polymers27 were also used for potential-controlled separations. For 

example, through electrochemical control, the oxidation state of polypyrrole, a conducting 
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polymer, can be manipulated. In its reduced form, the polymer exists in its uncharged, 

nonconductive state. Oxidizing the polymer drives the reincorporation of a counterion, which 

results in a positively charged conductive phase. In this example, analyte retention will be 

different for the reduced and oxidized form of the stationary phase, resulting in a partitioning 

mechanism in which retention is manipulated via changes in Eapp.2S'31 

Several interesting stationary phases have been used to examine potential-controlled 

retention such as: carbon,32,33 crown ether coated conductive particles,34 polyaniline coated 

particles34"37 polypyrrole-coated stationary phases,35"38 a heme-agarose sorbent,39 a heme-

derivitized stationary phase,40 and an unmodified mercaptohexanol stationary phase.40 A l-

glutamate doped polypyrrole has also been coated onto carbon fibers as a molecular 

imprinted stationary phase.41 Despite the extensive research to this point, chromatographic 

efficiencies of potential controlled separations comparable to conventional HPLC had not yet 

been achieved. EMLC methodology has also been utilized for the development of 

electrochemically controlled solid phase microextraction by taking advantage of the 

deposition/stripping nature described in some of the earlier studies on EMLC.42"45 

A major advancement in EMLC came with the redesign of the column to withstand 

the chromatographic pressures necessary for the use of a high pressure slurry packer and the 

high pressures needed when using high performance packings. This first truly 

chromatographic column was used for the separation of a series of aromatic sulfonates.10 

Further examination of the effect of Eapp (fixed and gradient) by analysis of a variety of 

aromatic sulfonates began to delineate some of the important features of the retention 

mechanism.11,46 These early studies used glassy carbon beads as the chromatographic 

stationary phase. The development of PGC by Knox as a high efficiency HPLC packing 
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material, described below,47"50 allowed significantly improved chromatographic efficiency in 

EMLC.11'46 

While chromatographic efficiencies were improved, there were still limitations in the 

electrochemical performance (large charging currents and long equilibration times). Further 

column design improvements used a porous stainless steel housing as the auxiliary electrode, 

resulting in a three-fold improvement in equilibration time.9 Re-examination of the aromatic 

sulfonates yielded a clear linear dependence of the natural log of the capacity factor (In &") on 

Eapp-9 Using the new column design, a series of different compounds were separated: 

corticosteroids,8 neutral monosubstituted benzenes,12 benzodiazepines,6 and aromatic anions 

and cations.51 Through electrosorption-based modification of PGC with P-cyclodextrin, the 

enantiomeric separation of hexobarbital and mephenytoin5 and benzodiazepines7 were 

achieved. EMLC has also been coupled with electrospray mass spectrometry3 and the 

chemical modification of the carbon stationary phase with diazonium salts4 and via the Kolbe 

reaction52 have been explored. Using an alternate column design that also allowed the use of 

a slurry packer, several short-chain carboxylic acids were separated on GC.53 

Development of a High Efficiency Carbon Stationary Phase. Prior to the 

development of EMLC was the synthesis of a high efficiency carbon phase for HPLC. 

Kiselev's studies on the heats of adsorption of organic compounds onto graphitized carbon 

black54"57 and the use of graphitized carbon black in gas chromatography58,59 led to the idea 

of using carbon in the HPLC separation of both nonpolar and polar compounds.60 However, 

the carbon phases at the time were too fragile to withstand the pressures required by HPLC. 

The first HPLC experiment using carbon employed silica gel particles coated with pyrolytic 

carbon for the separation of organic compounds of varying polarity.61,62 Shortly after this 
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first demonstration, Guiochon and coworkers published several articles using pyrolytic 

carbon coated onto carbon black particles for the separation of organic compounds of varying 

polarity.63"65 While demonstrating the utility of carbon as a solid stationary phase for the 

separation of nonpolar and polar compounds, this work suffered from a high decree of band 

broadening, yielding separations inferior to the chromatographic efficiency typical of bonded 

stationary phase counterparts. 

The use of carbon in HPLC became a realistic option with the development of 

PGC.47,66 PGC is fabricated by the pyrolysis, in an inert environment, of a phenol-

formaldehyde resin on a mesoporous silica gel, which serves as a dissolvable template to 

define particle and pore size.47'48'50'66 The extent of graphitization (size of intraplanar 

microcrystallites) of the resulting structure is strongly dependent on pyrolysis temperature.48, 

67 PGC is viewed as having a significant (but not quantified) amount of intertwined ribbons 

with a basal plane structure.47'48 The intertwined ribbons give PGC its mechanical strength 

as well as its high graphitic nature. Because of its stability over a large pH range and its 

unique ability to retain both nonpolar and polar compounds, PGC has found utility in a wide 

variety of applications, including the separation of geometric isomers, enantiomers, sugars 

and carbohydrates, polychlorinated biphenyls, ionized compounds, and other highly polar 

compounds.50 Recent applications of PGC include the separation of biological compounds,68' 

69 pharmaceuticals,70'71 and environmental contaminants.72,73 

Virtually all EMLC work has employed either PGC or GC. While PGC is the more 

efficient packing, there are several key differences between PGC and GC that make them 

both interesting to investigate as a stationary phase. One structural difference is that PGC is 

a porous stationary phase (high surface area), while GC is a nonporous stationary phase 
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(lower surface area), resulting in a higher chromatographic efficiency for PGC. Another 

important surface structural difference is the ratio of edge plane (sp3 hybridized) to basal 

plane (sp2 hybridized) carbon. Based on Raman and AFM studies, it is a currently held belief 

that the GC surface is comprised of a small fraction (< 10%) of highly ordered domains.74,75 

In other words, the GC surface has very little electronically pure edge or basal planes; these 

regions exist, rather, as electronically perturbed domains that have a partial charge character 

that enhances interactions with aromatic systems. PGC on the other hand, as previously 

mentioned, is viewed as intertwined ribbons with a highly pronounced basal plane structure; 

that is, a 2-D graphite structure.48 

Another critical feature of a carbon surface is the concentration of surface oxygen. 

X-ray photoelectron spectroscopy (XPS) studies in our laboratory have confirmed that as-

received PGC particles have negligible levels of surface oxygen (< 1%), while GC spheres 

have a substantial surface oxygen concentration (~5%). In addition to the concentration of 

oxygen on the carbon surface, the nature of these groups (e.g., phenol, carbonyl, lactone, 

carboxylic acid, o-quinone, and /7-quinone) may impart different sorptive properties and may 

be present in differing amounts depending on material processing.67 Moreover, it has been 

shown that the surface carbonyl species (benzoquinones and ketones) are confined to edge 

plane regions.76 

It is also important to realize that the slow oxidation of surface groups on these 

phases can result in a change in retention.77 After treating a PGC column with an oxidizing 

agent, no clear peak for a negatively charged analyte was observed in the resulting 

chromatogram. However, after equilibrating the column for several days, a band for the 

eluent appeared with close to the same retention time as a non-treated columns.77 Based on 
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this evidence, it appears that the surface was slowly reduced to its original state by the 

mobile phase. Results in our laboratory, which are presented in Appendix A, have found that 

a change in the surface oxygen content of the PGC strongly correlates with a change in 

analyte retention. 
1 

Retention on Carbon Stationary Phases. Today's separation theories for carbon 

phases are founded on a combination of intermolecular forces including donor-acceptor, 

dispersive, and solvophobic interactions.47'78'79 Donor-acceptor interactions occur as a result 

of the aromatic nature of the carbon surface (interactions between the n and/or tt electrons of 

an analyte and the delocalized ;r electrons at the carbon surface). The high polarizability of 

the surface leads to a dipole or "mirror charge" beneath the carbon surface in the presence of 

polar analytes.48,80 This induced dipole leads to an electrostatic attraction. 

In EMLC, electrostatic attractions appear to dominate the potential dependence of the 

retention of aromatic sulfonates.6,9 However, due to the control of the charge density of the 

carbon surface in EMLC, it is unclear whether an induced dipole will be caused by the 

presence of a polar analyte. Some types of carbon phases have varying amounts of oxygen-

containing groups that may lend a significant polar character to the stationary phase. This 

polarity can lead to dipole and H-bonding interactions with analytes. Dispersive and 

solvophobic forces can also act to increase analyte retention as a function of hydrophobicity, 

as recently modeled by several groups.81"83 Solvophobic interactions, which reflect the 

thermodynamics of the solvation of an analyte in the mobile phase, are a consequence of how 

an analyte disrupts local solvent structure.7,84 In an HPLC separation, changes in 

solvophobicity are affected by a change in the organic content of the mobile phase. The 

situation with EMLC is notably different. We will conceptually examine possible 
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solvophobic effects in EMLC within the context of changes in the structure (e.g., charge 

distribution) of the electrical double layer with Eapp. Determining both the retention 

dependencies of highly aromatic nonpolar compounds, polycyclic aromatic hydrocarbons 

(Chapter 5), and small inorganic anions (Chapter 3) with Eapp will add to this understanding. 

The electrical double layer is viewed as an arrangement of charged species and 

oriented dipoles at the electrode-solution interface.85,86 The solution side of the double layer 

consists of several tiers: the inner Helmholtz plane (IHP), the outer Helmholtz plane (OHP), 

and the diffuse layer. The IHP consists of specifically adsorbed ions and highly ordered 

solvent molecules. The OHP is composed of solvated ions and solvent molecules that are 

less ordered than in the IHP. The diffuse layer is a region of excess charge that balances the 

charge on the substrate, and extends from the OHP into the bulk solution.85,86 The 

thicknesses of these layers, especially the diffuse layer, depend upon the charge on the 

substrate and electrolyte concentration. The implications of the dependence of the diffuse 

layer thickness on charge density as manipulated by changes in Eapp, will need to be 

addressed as we work to develop an accurate picture of the volume of the stationary phase 

(Vsp). The importance of Vsp is elucidated in the next section. 

Thermodynamic Determinations in HPLC. Retention in HPLC is often expressed 

as the capacity factor, k', which is the ratio of the number of moles of analyte in the 

stationary phase (nsp) to the number of moles of analyte in the mobile phase (nmp). 

*'=-=- [1] 

According to this definition, the capacity factor is directly proportional to the equilibrium 

constant (K) for the interaction governing retention. 
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&'= Kty [2] 

The term <|) is the phase volume ratio, 

[3] 
mp ^ 

where the volume of the stationary phase is given by Vsp and the volume of the mobile phase 

is represented by Vmp. 

Based on these definitions, an analysis of retention can then be carried out via 

equilibrium thermodynamics, 

AG0 = AH0 -TAS° [4] 

AG0 =-RT In K [5] 

where AG0 is the change in the standard Gibbs free energy, Abf is the change in standard 

enthalpy, AS0 is the change in standard entropy, T is the temperature, and R is the gas 

constant. 

Combination of equations 2, 4, and 5 allows the extraction of the thermodynamic 

characteristics (A//* and AS0) of chromatographic systems from the temperature-dependence 

of k, as given by the van't Hoff relationship in eqn. 6. 

+ + [6] 

If A//0 is a constant over the target temperature range, then the slope of a plot of In K against 

the inverse of T is directly proportional to A//1. By extension, the linearity of the van't Hoff 

plot also implies that other thermodynamic quantities, such as heat capacity of the mobile 

phase, are independent of temperature in the same range. A positive slope in the van't Hoff 
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plot is indicative of an exothermic process, whereas a negative slope is indicative of an 

endothermic process. 

If a value for <|> can be determined, the standard entropy change can be calculated 

from the y-intercept of the plot, which equals AS0//? + In <J>. A negative value for AS0 

indicates a decrease of disorder in the system, whereas a positive AS0 indicates an increase in 

disorder in the system upon adsorption of the analyte onto the stationary phase. If both A#° 

and AS0 are known, the overall change in standard Gibbs free energy (AG0) of the interaction 

can then be calculated. Since chromatographic retention is a spontaneous process, AG0 

should be negative. 

The application of the van't Hoff equation to HPLC has a long history.87 Several 

laboratories have used this approach to define the thermodynamic basis of retention 

mechanisms in many systems, such as reversed-phase liquid chromatography (RPLC)87"92 

and ion-exchange chromatography (IEC).93"95 The similarities or differences in the values of 

both AH0 and AS0, as determined under the same separation conditions, are often valuable in 

assessing whether or not the retention mechanism of a group of analytes is the same or 

different. The principle focus in the cited work was on delineating the enthalpic contribution 

to retention. 

In RPLC, retention generally decreases with increases in temperature,88"92 indicating 

that the overall retention mechanism between an analyte and the reversed-phase packing is 

exothermic (negative values of AH0). Retention at carbon stationary phases is also typically 

exothermic.96"98 This situation arises from the polarity difference between the stationary and 

mobile phases. For a given mobile phase and stationary phase, the greater the similarity 
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between the polarity of the analyte and the stationary phase, the stronger the interaction; 

hence, AH0 is more exothermic. Conversely, the closer in polarity the analyte is to the 

mobile phase, the less exothermic the interaction. When comparing the retention across 

different mobile phase compositions, a larger polarity difference between the mobile and 

stationary phases corresponds to a more exothermic interaction. As such, the magnitude of 

exothermicity can reflect the type and strength of the interaction between the analyte and 

stationary phase. 

While RPLC separations are generally exothermic, AS0 can have a significant role in 

selectivity changes as a function of temperature90 as well as in shifts in retention with a 

variety of mobile phase polarities.88,89 In the separation of benzodiazepines, AS0 increased 

with increased mobile phase polarity (decreased methanol content) due to changes in water 

ordering around the analyte in the mobile phase (i.e., the hydrophobic effect).89 Furthermore, 

it was found that while AH° dominated the retention, AS0 played an increasing role with a 

decrease in mobile phase polarity.89 Similarly, systematic studies on the retention of neutral 

aromatic compounds at carbon phases showed that the greater the contact area of the organic 

compound with the surface (i.e., how flat the molecule sits on the surface), the lower the 

entropy of adsorption due to lower surface mobility resulting from local order surrounding 

the analyte on the mobile phase.96 Nevertheless, AH0 is often the overriding energy driving 

the separation in most cases.88,89,96 

The situation with IEC, however, can be dramatically different in that the Aif can 

actually be positive (i.e., endothermic), particularly for organic ions.93"95,99 Since the 

measured retention is spontaneous, entropy must play the governing role in the retention. 
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The hydrophobic nature of the organic ions leads to increased disorder upon adsorption due 

to extensive short-range ordering of the water molecules surrounding the organic ions in the 

mobile phase.93"95,99'100 The impact of entropy is particularly notable in the ion exchange of 

ionic aromatic compounds (e.g., benzene sulfonates and naphthalene sulfonates).101 These 

compounds have both ionic and hydrophobic character. Here again, the hydrophobic 

interactions can lead to a retention process that is entropically and not enthalpically 

controlled due to the breakup of structured water in the mobile phase as the analyte is 

adsorbed onto the ion exchanger.101 

High Speed Chromatography. Up to this point, the use of temperature has been 

discussed from a fundamental perspective. Temperature can also be employed as a means of 

optimizing a separation. While seldom enhancing the resolution of the separation or the 

asymmetry of an elution band, elevating the column temperature has several distinct 

advantages that have been known for some time.102,103 As discussed above, increasing the 

column temperature in RPLC generally decreases the retention time due to the exothermic 

nature of the interaction.88"92 In addition, the mobile phase viscosity decreases significantly 

at elevated temperature, which is evident in a drop in the column back pressure. With a drop 

in column back pressure, higher flow rates can be achieved without exceeding instrumental 

pressure limits, thereby increasing the speed of the separation, generally without loss of 

resolution. 

Early work postulated that fast liquid chromatography could be achieved at high flow 

rates using small particles in a long column.104 The larger particles commonly used in HPLC 

require slower flow than the optimum linear velocity due to the pressure limits of the 

instrument. Slower flow results in an increase in longitudinal diffusion as evident in 
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increased band broadening.105 Conversely, higher flow rates would decrease longitudinal 

diffusion due to the analyte spending less time on the column. The more time the analyte 

spends on the column, the more the extent of longitudinal diffusion. 

Only recently, however, have the advantages of increased temperature been fully 

realized in the performance of fast and ultra-fast liquid chromatography.106,107 By 

functioning at elevated column temperatures, the flow rate or linear velocity of the mobile 

phase can be increased due to the drop in mobile phase viscosity. Increasing the flow 

through the column can decrease the efficiency of the separation if the optimum linear 

velocity is exceeded. However, an increase in temperature increases the efficiency by 

improving analyte diffusivity. Careful instrumental design must balance these two effects, as 

well as address the issues related to the temperature limits of commercial hardware, in order 

to fully exploit this opportunity. Implementation of such a design by Carr and coworkers has 

resulted in separations in well under 1 min.106,107 

Investigating both the thermodynamic and mobile phase viscosity effects of 

temperature, as well as furthering the understanding of the retention mechanism in EMLC 

through changes in mobile phase conditions and careful choice of analytes, is the focus of 

this dissertation. 

Dissertation Organization 

Chapter 2 describes the use of varied temperatures in EMLC to calculate the standard 

enthalpy and entropy of the retention mechanism on GC. Chapter 3 describes the first 

demonstration of the potential-controlled separation of inorganic anions on carbon at 

constant temperature. Chapter 4 discusses the use of elevated temperature and flow rate to 
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achieve EMLC separations in less than 1 min. Chapter 5 describes the unique behavior of 

polycyclic aromatic hydrocarbons with different mobile phase conditions and at elevated 

temperature and flow rate. Finally, a general conclusion is presented in Chapter 6. In the 

process of completing the above described experiments some interesting effects of elevated 

temperature on carbon were discovered. Specifically, operation at higher temperatures 

accelerates the oxidation of the packing surface, as discussed in Appendix A. 

And now for something completely different: a project involving the analysis of 

spacecraft water is briefly described in Appendix B. This work is the start of efforts to 

improve the archiving of trace organic compounds in spacecraft water onboard the Shuttle 

and International Space Station for ground analysis upon return to Earth. 
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CHAPTER 2. THERMODYNAMICS OF RETENTION IN 
ELECTROCHEMICALLY MODULATED LIQUID 

CHROMATOGRAPHY 

A paper in preparation for publication 

Lisa M. Ponton,1,2 David W. Keller,2 and Marc D. Porter2,3 

Abstract 

The temperature dependence of retention was investigated to examine the on-column 

thermodynamics for separations based on electrochemically modulated liquid 

chromatography (EMLC). EMLC couples electrochemistry and liquid chromatography for 

the facile manipulation of analyte retention through changes in the potential applied (Eapp) to 

conductive stationary phases like glassy carbon (GC). A detailed understanding of the 

EMLC-based separation mechanism would therefore be beneficial for the development of 

predictive retention rules, while also yielding insights into phenomena at electrified 

interfaces. The work herein details an investigation in which the dependence of retention as 

a function of column temperature for two nathphalene difulfonates (1,5- and 2,6-naphthalene 

disulfonate) was determined at several values of Eapp. In each case, the van't Hoff 

relationship was employed to calculate the enthalpic and entropie contributions to the 

retention process (i.e., the transfer of an analyte from the mobile to stationary phase). The 

results show that the retention for both compounds is exothermic at a level comparable to 

many reversed phase separations. However, the overall dependence of retention by Eapp is 
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actually entropically controlled in a manner paralleling that for organic anions at resin-based 

ion exchange materials. Possible origins of the observed entropie control are examined, and 

its implications to EMLC-based separations are discussed. 

I 

Introduction 

Electrochemically modulated liquid chromatography (EMLC) is an intriguing variant 

of high performance liquid chromatography (HPLC).1 In EMLC, conductive stationary 

phases like glassy carbon (GC) and porous graphitic carbon (PGC) are packed in a HPLC 

column that also functions as a three-electrode electrochemical cell. The packing therefore 

acts as a chromatographic stationary phase and a high surface area working electrode. This 

dual usage results in the unique ability to manipulate the donor-acceptor properties (e.g., 

surface charge density) of the conductive packing through changes in applied potential (Eapp), 

which, in turn, alters retention. Reports from several laboratories,2"7 including our own,8"16 

have shown that EMLC can be utilized for the separation of a wide range of mixtures (e.g., 

aromatic sulfonates,12 monosubstituted benzenes,11 pyridines and anilines,13 corticosteroids,10 

benzodiazepines,8 and short chain alkanoic acids5). 

To date, interpretations of how Eapp affects retention have employed structural 

parameters like local dipole moment and hydrophobicity, which have been coupled to 

electrical double layer theory and molecular adsorption models to include contributions from 

the supporting electrolyte and mobile phase.11 The work reported herein is the first in a 

series of investigations that takes a different tact in furthering a mechanistic understanding of 

EMLC by examining the effects of temperature on retention through the van't Hoff 

relationship. Several laboratories have used this approach to develop a thermodynamic 
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insights into retention mechanisms for a number of separation formats, including reversed-

phase liquid chromatography (RPLC)17-22 and ion-exchange chromatography (IEC).23"25 

Moreover, comparisons of the enthalpy (AH0) and entropy (AS0) for the transfer of an analyte 

from the mobile to stationary phase can be valuable in assessing whether there are 

mechanistic similarities for the retention for different analytes. 

The retention of small molecules in RPLC almost always decreases with increases in 

temperature,18"22 which is diagnostic of an enthalpically driven process. Retention at 

carbonaceous stationary phases is also typically exothermic.26"28 The magnitude of the 

exothermicity can be qualitatively assessed by comparisons of the polarity of the analyte with 

respect to the stationary and mobile phases. In general, the closer the polarity of the analyte 

and stationary phase, the stronger the interaction and the greater the exothermicity of 

retention. Conversely, the closer the polarity of the analyte and mobile phase, the lower the 

exothermic contribution to retention. 

There are a few instances in which small molecule-retention in RPLC undergoes an 

00 TO l1) 
increase with temperature. ' " One of the most intriguing examples involves the 

temperature dependence of retention for ethanol, isopropanol, and butanol at a packing 

composed of hydrophobic porous beads (i.e., a reversed phase packing devoid of charged 

groups or residual silanols).29 Using water as the mobile phase, the retention of the three 

analytes exhibited an increase with temperature. This dependence was attributed to the 

hydrophobic effect,29'33 which is indicative of a retention process under entropie control. 

Results also showed that the gradual addition of an organic modifier (i.e., methanol) in the 

mobile phase decreased the observed endothermicity, and in the case of butanol actually lead 
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to an exothermic retention process. Other examples19 found that while AH° dominated the 

retention, AS0 increased with increased mobile phase polarity. 

Retention in IEC can also be endothermic, particularly for organic ions,23*25'34 which 

translates to a process controlled by entropy. The impact of entropy is particularly notable in 

the ion exchange of ionic aromatic compounds (e.g., benzene sulfonates and naphthalene 

sulfonates).35 Again, hydrophobic interactions lead to a retention process that is entropically 

and not enthalpically controlled, reflecting the breakup of the more structured water clusters 

surrounding these hydrophobic anions when retained by the ion exchanger.35 

The work reported herein employs a similar set of tactics to gain insights into the on-

column thermodynamics of retention in EMLC. This paper therefore describes: 1) the 

findings from an investigation of the temperature dependent retention in EMLC separations 

of two naphthalene disulfonates (i.e., 1,5- and 2,6-naphthalene disulfonate) at GC stationary 

phases; and 2) the implications of these findings to fundamental issues in adsorption 

phenomena at electrified interfaces. By the extraction of the enthalpic (A//0) and entropie 

(AS0) contributions to EMLC-based retention and comparisons with relevant data in the 

literature on RPLC and IEC, further insights into factors central to EMLC-based retention are 

detailed. 

Experimental Methods 

Chemicals and Reagents. The analytes, 1,5-naphthalene disulfonate (1,5-NDS) and 

2,6-naphthalene disulfonate (2,6-NDS), were purchased from Aldrich Chemical (Milwaukee, 

WI). Both were used at a concentration of 12 pM after dissolution in Milli-Q water 

(Millipore, Bedford, MA). The mobile phase consisted of 40 raM (aqueous) sodium 
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hexafluorophosphate (Aldrich) with 5% HPLC grade acetonitrile (Fisher Scientific, 

Pittsburgh, PA) in Milli-Q water, which was passed through a 0.5-|im filter (GE Osmonics 

Inc., Minnetonka, MN) prior to use. 

The GC particles were obtained from Alfa Aesar (Ward Hill, MA) having a size 

range of 0.4-12 pm and further sieved by air classification to 5-10 |im.12 Base on BET 

characterizations, these particles have a surface area of 2.39 m2/g. Prior to packing, the 

particles were washed in sulfuric acid and Milli-Q water to remove calcium and fluoride 

from the surface, which are attributed to residues from particle preparation. 

Characterizations by X-ray photoelectron spectroscopy revealed, as previously reported,12 

that as-received GC has a surface oxygen content of ~6% (atomic), which is largely 

distributed among phenol, carboxylic acid, and quinone groups. 

Instrumentation. The design and construction of the EMLC column9 and hardware 

for temperature control16 have been previously described. In brief, the EMLC column uses a 

conductive stationary phase, such as GC, that is packed inside a Nafion™ (Perma Pure Inc., 

Toms River, NJ) cation-exchange membrane that has been previously inserted in tubular 

form into a porous stainless steel column (Mott Corp., Farmington, CT). The Nafion™ 

tubing functions as: 1) an electronic insulator between the conductive packing and auxiliary 

electrode; and 2) a salt bridge between the packing and auxiliary and reference electrodes. 

The porous stainless steel housing also serves as a high surface area auxiliary electrode. All 

values of Eapp are reported with respect to an Ag/AgCl (saturated NaCl) electrode, which was 

placed in an electrolyte-filled reservoir that surrounds the porous stainless steel column at the 

same temperature as the column. The temperature coefficient for the potential for this type 

of reference electrode is -0.71 mV/°C in the temperature range of 20-55 °C.36 We note that 
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respect to a reference electrode at 20 °C. The resulting effect on retention at most contributes 

to a -2 kJ/mol systematic error in the determination of AH0. 

The experimental system for temperature dependence investigations largely 

duplicated the designs described by Carr and co-workers.37,38 The temperature was 

controlled to ±0.2 °C by the immersion of key system components (i.e., EMLC column and 

20-cm length of stainless steel tubing connected to the column inlet), both of which were 

surrounded in a latex bag for protection against reservoir leakage and to insulate the column 

from contact with the water in the in the thermostated water bath (Polyscience, Niles, IL). 

The 20-cm length of stainless steel tubing was used to temperature-equilibrate the mobile 

phase and sample before entering the column. The lack of any observable band broadening, 

a diagnostic of thermal mismatch, supports the adequate pre-heating of the liquid before 

entering the column;39 tests also showed that the column efficiency at 22 °C (8200 plates/m) 

was similar to that at 55 °C (8400 plates/m), which further supports adequate thermal 

equilibration. The column was allowed to equilibrate for 30 min after each alteration in 

temperature, noting that the associated change in system backpressure required ~10 min to 

stabilize. 

The column was attached to an Agilent Technologies model 1050 HPLC equipped 

with a quaternary pump and a diode array detector. The samples were injected via a 

Rheodyne model 7125 injector with a 5.0 ^L loop (Cotati, CA). The elution profiles were 

monitored at 226 nm. The value of Eapp was controlled by an Amel potentiostat to ±1 mV. 
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Data Analysis. The void time for the column was measured by the injection of water 

for calculations of the capacity factor, k\ i.e., nsplnmp, where nsp is the moles of analyte on the 

stationary phase and nmp is the moles of analyte in the mobile phase. Retention times were 

determined by using first moment statistical analysis in order to compensate for band 

assymetry.40 The first moment (Mi), defined as 

f th(t)dt 
[1] 

j h(t)dt 

where h(t) is the height at time t, represents the centroid of the chromatographic peak. 

On-column thermodynamics, i.e., A//0 and AS0, were extracted from the temperature-

dependence of the capacity factor (&*) that is given by the van't Hoff relationship in 

Equation 2, 

lnjt'=^^- + —+ ln<(> [2] 
R T R  

where R is the gas constant and T is the column temperature. The term <j> is the phase volume 

ratio and is defined by Equation 3, 

+ [3] 
mp 

with the volume of the stationary phase given by Vsp and the volume of the mobile phase by 

Vmp. If Aif is a constant over the tested temperature range, then the slope from a plot of In K 

against the inverse of T is directly proportional to Aif. By extension, the linearity of the 

van't Hoff plot often, but not always, implies that related thermodynamic quantities, such as 

the heat capacity of the mobile phase, are invariant over the same temperature range. 
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The ̂ -intercept of a van't Hoff plot can be used in the determination of AS0, if the 

value of <|> is known. However, the development of an exacting definition and determination 

of <(> is a long standing issue in most chromatographic systems.41 The value of Vmp can be 

determined in several ways, including the minor disturbance method which usep an 

"unretained" component of the mobile phase as a void marker.42 Other methods (e.g., 

pyconometry)42 were ruled out as possibilities because of the use of Nafion™ and porous 

stainless steel in the EMLC column design, both of which may retain liquid and compromise 

the measurement. We therefore determined Vmp from the pseudo peak for water, which is 

used for analyte dissolution and injected into the mixed mobile phase. From 194 replicate 

injections, the elution time for the pseudo peak equaled 0.570 ± 0.004 min, which coupled 

with the 0.499 ± 0.002 mL/min flow rate of the mobile phase, translated to a Vmp of 0.284 ± 

0.002 mL. Determinations were also carried out in which the sample was dissolved in 

acetonitrile:water mixtures of varied composition (0-5% acetonitrile) with and without 

supporting electrolyte. There were no detectable changes in the elution time for the void 

maker when the acetonitrile level was less than 3%; the void marker was not detectable when 

the acetonitrile level was greater than 3%. 

The functional definition and determination of Vsp are equally, if not more, 

problematic in many chromatographic systems 43 In RPLC, for example, the uncertainty in 

the free volume of the bonded phase and the extent in which it interacts with an analyte has 

major implications in terms of the value of Vsp. In our case, however, the GC stationary 

phase is an uncoated and nonporous solid. We have therefore made the reasonable 

assumption that Vsp defined by the surface area of the packing and the thickness of the 

compact component of the electrical double layer, both of which are invariant with changes 
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in Eapp. As such, Vsp can be calculated as the product of the surface area of the packing 

loaded into the column and the thickness of the compact layer. The total surface area of the 

stationary phase can be determined from the mass of GC loaded in the column (i.e., 0.49 g), 

whereas the thickness of the compact layer is the sum of the thicknesses of the inner and 

outer Helmholtz layers (i.e., 5.4 À).44'45 Based on this model, Vsp equals 0.63 pL, with <j> 

then calculated to be 2.2 x 10"3. We note that the linearity of the data in the inset in Figure 1 

(see below) supports the invariance of <(> with Eapp. The other component of the electrical 

double layer is the diffuse layer, the thickness of which is potential dependent. Any variance 

in the determination of Vsp would add a systematic error to the determination of AS0, which 

would have no impact on the trends in the data observed. For example, for every additional 

1 A of stationary phase thickness, AS0 would decrease by 1 J/molK and increase AG0 by 0.3 

kJ/mol. 

If both Ati° and AS0 are known, the standard Gibbs free energy (AG0) for retention 

can be readily calculated. Since retention is a spontaneous process, calculation of AG0 can be 

used as a check for the determination of ùjf and AS0. 

Results and Discussion 

Retention as a function of Eapp. As previously reported,9 the change in retention as 

a function of Eapp for a variety of aromatic sulfonates at a carbonaceous packing follows 

predictions based on electrostatic interactions. Figure 1 shows the effect of Eapp on the 

retention of 1,5- and 2,6-NDS. Both analytes exhibit a marked decrease in retention as Eapp 

becomes more negative, with 1,5-NDS eluting before 2,6-NDS in each instance. The effect 
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Figure 1. Chromatograms for a mixture of 1,5- and 2,6-NDS as a function of Eapp using a 
GC stationary phase. Mobile phase: 0.5 mL/min 40 mM NaPF* (5% acetonitrile in water). 
The open circuit potential under this mobile phase was +300 mV. Inset: Dependence of In kf 
vs Eapp for 1,5- (•) and 2,6-NDS (•). Error bars are smaller than the size of the data points. 
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of Eapp on retention is particularly evident when comparing the chromatograms collected at 

+200 mV and -200 mV. The retention of 2,6-NDS decreases from 8.4 to 2.2 min, whereas 

that for 1,5-NDS decreases from 2.4 to 1.1 min. 

The inset in Figure 1 summarizes these dependencies through plots of In K vs. Eapp. 

In both cases, In k is linearly dependent on Eapp. These observations can be qualitatively 

understood by consideration of the ion distribution law, which relates the influence of a 

potential difference on the equilibrium concentration of ions within the region bound by the 

potential difference.46 Assuming that Eapp modulates only the electrostatic interaction 

between a charged organic analyte and stationary phase,13 the ion distribution law can be 

written for our purposes as, 

where [Az"\sp is the concentration of an anionic analyte at the surface of the stationary phase, 

[Az']mp is the concentration of the same analyte in the mobile phase, z is the charge on the ion, 

e is the charge of an electron, k is the Boltzmann constant, and T is the absolute temperature. 

By substituting the definition of <|> (Equation 3) and that of k\ 

into Equation 5, we can then write Equation 6. 

Equation 5 predicts that the retention of anions will increase linearly as Eapp becomes more 

positive. A parallel treatment shows that the converse applies to the retention of cations. 

[4] 

[6] 
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The dependencies for 1,5- and 2,6-NDS in Figure 1 are consistent with the prediction 

of Equation 6, a result that also holds for a number of monosubstituted aromatic sulfonates.11 

Linear dependencies have also been found for several protonated anilines and pyridines,13 

recognizing that In k' for positively charged analytes increases linearly with a decrease in 

Eapp. Moreover, Equation 6 applies to all the ions present in the system, including those of 

the supporting electrolyte. The resulting slopes in the Figure 1 inset therefore reflect how 

changes in Eapp affects the competition between the doubly charged anions 1,5- and 2,6-NDS 

and the singly charged hexafluorophosphate. The next two sections include discussions of 

the importance of the supporting electrolyte. 

Temperature Dependence of EMLC Retention - Determination of Enthalpy. Figure 2 

presents a portion of the obtained retention dependence data for 1,5- and 2,6-NDS. It shows 

results at four different temperatures (22, 30, 45, and 55°C) and three different values of Eapp 

(+200, 0, and -200 mV). At each Eapp, the retention of both analytes decreases as column 

temperature increases. The retention, for example, of 2,6-NDS at -200 mV decreases from 

2.4 min at 22 °C to 1.0 min at 55 °C, and from 7.1 to 3.7 min at +200 mV for the same two 

temperatures. This trend is also evident for 1,5-NDS, which together with that for 2,6-NDS, 

indicate that the manipulation of retention by changes in Eapp for 1,5- and 2,6-NDS is 

exothermic. The exothermic nature of retention can be further exploited by taking advantage 

of the increase in solvent viscosity to allow the speed of the separation to be dramatically 

increased, as has been done with in a recent publication.16 

A workup of the retention data for the two analytes in terms of van't Hoff plots is 

shown in Figure 3 at five different values of Eapp (+200, +100,0, -100, and -200 mV) and 

eight different temperatures spanning from 22 to 55 °C. From an enthalpic perspective, the 
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Figure 2. Chromatograms for a mixture of 1,5- and 2,6-NDS at +200 (A), 0 (B), and -200 
mV (C) collected at 22,30,45, and 55°C using a GC stationary phase. Mobile phase: 0.5 
mL/min 40 mM NaPFe (5% acetonitrile in water). 
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plots reveal that: 1) In k' exhibits a linear dependence for both analytes at all five values of 

Eapp', 2) the slopes are all positively valued (i.e.; a linear increase in In k' with respect to 1/7); 

and 3) the magnitudes of the slopes for both analytes increase as Eapp moves negatively. 

Temperature therefore has a more notable impact on retention the more negative the value of 

Eapp. Moreover, retention becomes an increasingly exothermic at the more negative values of 

Eapp• 

The calculated values of Aif for both analytes are summarized in a portion of Table 

1. The values for ùjf range from -11 to -31 kJ/mol over the spread of Eapp, with 2,6-NDS 

more exothermic than 1,5-NDS at each Eapp. These values are comparable to those reported 

in RPLC (-6 to -31 kJ/mol),19"22 and are qualitatively consistent with the reversed phase 

character exhibited by PGC due to the easily polarized graphitic surface.47 

These data also show that the retention of 1,5- and 2,6-NDS becomes increasingly 

exothermic as Eapp becomes more negative. The exothermicity for both analytes increases by 

12 kJ/mol when Eapp changes from +200 to -200 mV. As mentioned earlier, many RPLC and 

IEC processes are characterized by an increase in exothermicity and a concomitant increase 

in retention. However, these analytes undergo a decrease exothermicity as retention 

increases, which is in direct opposition to most RPLC and IEC process. 

Temperature Dependence of EMLC Retention - Determination of Entropy. Since 

Aff does not fully explain the trend in retention as a function of Eapp, AS0 must play a 

significant role. As observed in Figure 3, the ̂ -intercepts of the van't Hoff plots become 

increasingly positive as Eapp moves positively. Calculating <|> as described earlier, the entropy 

of the interaction can be calculated from the intercepts of the van't Hoff plot using Equation 

2, as given in Table 1 and Figure 4B. The more positive the value for AS0, the more favored 
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Table 1. Thermodynamic parameters in the EMLC-based retention of 1,5- and 2,6- naphthalene disulfonates. 

AH0 (kJ/mol) TAS° (kJ/mol) AG0 (kJ/mol) 

Eapp (mV) 1,5 NDS 2,6 NDS 1,5 NDS 2,6 NDS 1,5 NDS 2,6 NDS 

+200 -11 ±1 -19+1 6 + 1  2 + 1  -17+1 -21 ±1 

+100 -13 ±1 -20 ± 1 4 + 1  0 + 1  -16+1 -20+1 

0 -16+1 -24+1 -1 + 1 -5 + 1 -16+1 -19+1 

-100 -18 ± 1 -27+1 -3 + 1 -8+1 -15 + 1 -19+ 1 

-200 -23+1 -31 + 1 -9+1 -12+1 -15 + 1 -18+1 
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Figure 3. van't Hofîplots for 1,5- and 2,6-NDS at a GC stationary phase at several different 
values of Eapp: +200 (D), +100 (A), 0 (X), 100 (*), and -200 mV (O). Mobile phase: 0.5 
mL/min 40 mM NaPF& (5% acetonitrile in water). Error bars are smaller than the data points. 
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the equilibrium process. Therefore, as the entropy becomes more positive, the system 

becomes more disordered as a result of the equilibrium process. This disorder could be due 

to the presence of the analyte in the mobile phase resulting in a more disordered mobile 

phase or the presence of the supporting electrolyte causing more disorder in the stationary 

phase. In either case, retention should increase as AS0 becomes more positive because the 

interaction becomes more favorable. This trend is consistent with the retention trend 

observed in Figure 1, suggesting that in retention as a function of potential is likely governed 

by entropy. 

In ion exchange processes the dominance of entropy has been attributed to the 

solvation/desolvation of the analyte.35,48,49 The importance of AS0 is ascribed to the 

classical "structure-forming action" exerted by the nonpolar moiety of 1,5-NDS on adjacent 

water molecules (i.e., the hydrophobic interaction).20,33,48 The adsorption of 1,5-NDS 

therefore entails a collapse of these structured water clusters, and if their collapse is the 

overriding contributor to AS0, the overall entropy of the system will increase. The energy 

consumed in breaking up these clusters, which form by an increase in the degree of hydrogen 

bonding between water molecules,50 will also have an impact on AH0. The results for 2,6-

NDS lead to the same interpretation, and have particular precedence in the literature on ion 

exchange chromatography.35,49 

Overall then, the adsorption of a charged organic analyte onto the surface requires the 

desorption of an electrolyte ion. The measured change in enthalpy is then a combination of 

the energetics of both events. Since the measured change in enthalpy is exothermic, the 

adsorption of the organic ion is favored over the adsorption of the electrolyte ion. However 

some energy is required to remove the electrolyte ion thereby decreasing the observed 
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exothermicity of adsorption. As the Eapp becomes more negative, the interaction of all ions 

to the surface decreases. In other words, the increase in the exothermicity of retention as Eapp 

moves to more negative values arises from the inherently stronger interaction of the organic 

anions, over the supporting electrolyte ion, with the PGC surface. A parallel argument that 

describes the observed trend in AS6, recognizes that the system is more disordered when there 

is more supporting electrolyte in the mobile phase. 

As a final check on the balance of A//0 and AS0, the Gibbs free energy (AG0) can be 

calculated by 

AG0 = AH° -TAS° [7] 

as shown in Table 1 and Figure 4C. All values of AG0 are negative indicating that the 

retention mechanism is spontaneous. Comparison of the AG0 value for 1,5-NDS and 2,6-

NDS shows that more retained 2,6-NDS is more spontaneous, as expected. Furthermore, the 

retention process is slightly less spontaneous for each analyte at more negative potentials. 

Thus, the equilibrium constant would be smaller at -200 mV than it is at +200 mV, which is 

consistent with the observed trend in retention as a smaller equilibrium constant correlates to 

a smaller capacity factor, i.e., lower retention. 

The thermodynamic analysis of this EMLC-based separation indicates that while 

retention is in part favored by a RPLC mechanism as evident in the enthalpy of interaction, 

retention is also strongly governed by an IEC mechanism as evident in the entropy of the 

interaction. The enthalpic contribution leads to the strong adsorption commonly observed 

when PGC is employed as a stationary phase and its trend is dominated by the effect of 

electrolyte in the system. The entropie contribution to retention gives rise to the observed 
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Figure 4. Dependence of AH0 (A), AS0 (B), and AG0 (C) on Eapp for 1,5- (•) and 2,6-NDS 
(•) at a GC stationary phase. Mobile phase: 0.5 mL/min 40 mM NaPFg (5% acetonitrile in 
water). 
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dependence of retention on Eapp and is dominated by the effect of analyte in the system. The 

indication of multiple factors in the retention mechanism supports the power of EMLC in 

separating a wide range of analytes. 

I 

Conclusions 

Determination of the thermodynamic contributions to retention allows comparisons of 

the retention mechanism under a variety of conditions. Here we examined the retention 

behavior of two naphthalene disulfonates as a function of applied potential by calculating the 

enthalpic and entropie contributions to retention. Interestingly, while the retention 

mechanism is exothermic at all potentials, the trend in the exothermicity of the interaction is 

opposite the observed retention trend as a function of potential. Further calculation of the 

entropie contribution and overall Gibbs free energy shows that the dependence on potential is 

entropically controlled rather than enthalpically controlled. Entropically driven separations 

are commonly found in IEC suggesting a similarity in the retention mechanism between 

EMLC- and IEC-based separations. However, most IEC entropically driven separations are 

accompanied by a positive enthalpy rather than the observed negative enthalpy found here, 

therefore retention in EMLC is likely a combination of both RPLC and IEC characteristics. 
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CHAPTER 3. ELECTROCHEMICALLY MODULATED LIQUID 
CHROMATOGRAPHIC SEPARATIONS OF INORGANIC ANIONS 

A paper submitted for publication in Journal of Chromatography A1 

Lisa M. Ponton2'3 and Marc D. Porter3,4 

I 

Abstract 

Inorganic anion retention on a porous graphitic carbon (PGC) stationary phase is 

investigated by electrochemically modulated liquid chromatography (EMLC). Through 

various combinations of the potential applied {Eapp) to the PGC packing and/or changes in the 

composition (sodium salts of tetrafluoroborate, sulfate, and fluoride) and concentration (10, 

25, and 50 mM) of an aqueous mobile phase, conditions for the separation of two different 

inorganic anion mixtures (iodate, bromide, nitrite, and nitrate or iodate, bromate, and 

chlorate) are developed. Results show that retention was affected by both variables. 

Moreover, plots of In k' are linearly dependent on both Eapp and In [E\, where k' is the analyte 

capacity factor and [E\ is the supporting electrolyte concentration. Based on these findings, 

insights into the retention mechanism are briefly discussed by drawing on the theory for ion 

exchange chromatography. 

1 Reproduced with permission from Journal of Chromatography A © 2004 Elsevier 
2 Primary researcher and author 
3 Institute of Combinatorial Discovery, Chemistry Department, Iowa State University, and 

Ames Laboratory-USDOE Ames, IA 50011 
4 Author for correspondence 



www.manaraa.com

48 

Introduction 

Several reports have described the use of carbonaceous packings like porous graphitic 

carbon (PGC) for the separation of inorganic anions.1"9 One set of strategies, takes advantage 

of the hydrophobic character of PGC to control retention by either the dynamic modification 

of the stationary phase or the addition of ion-interaction reagents to the mobile phase. In the 

former, modification of PGC with the weak anion exchanger polyethyleneimine enabled the 

separation of several inorganic anions.1 With the latter, tetrabutylammonium hydroxide2 and 

alkylamines3 were added to the mobile phase to affect the separation. 

Another pathway to these separations exploited the semi-metal character of PGC. 

This strategy relied on the formation of a "mirror-charge" at the packing surface, which lead 

to retention by a charge-induced dipole.4,5 The separation of the oxo-anions TCO4" and 

ReO/f was proposed to arise from this mechanism.6,7 A recent report has extended this 

concept by the use of electronic competitors.8 This study found that adsorptive competition 

between carboxylic acids and inorganic anions for PGC dictated the analyte retention. 

Inorganic anions were also separated on PGC with dilute aqueous sodium sulfate as the 

eluent,9 work that also demonstrated a retention mechanism with ion exchange 

characteristics. 

This paper examines the separation of inorganic anions by electrochemically 

modulated liquid chromatography (EMLC).10 In EMLC, a conductive stationary phase, such 

as PGC, is packed into an LC column that is also configured to function as a three-electrode 

electrochemical cell. The packing therefore acts as both a chromatographic stationary phase 

and a high surface area working electrode. Through changes in applied potential (Eapp), the 

donor-acceptor properties (e.g., surface charge density) of the conductive packing can be 
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manipulated, which subsequently alters analyte retention. EMLC can therefore be viewed as 

an approach for fine tuning separations by controlling the effective composition of the 

stationary phase. 

Utilizing this dimension for affecting retention, reports from several laboratories,11"15 

I 
including our own,16"24 have shown that changes in Eapp can be exploited for the separation a 

wide range of mixtures. Early reports examined the effect of Eapp on the separation of 

monosubstituted benzenes,17 aromatic sulfonates,20 and pyridines and anilines.24 More recent 

studies explored the effectiveness of EMLC for manipulating the retention of corticosteroid16 

and benzodiazepine19 mixtures. An investigation that evaluated the ability to enhance 

performance by operation at elevated temperatures has also appeared,23 along with efforts to 

detail the mechanistic basis of EMLC separations.15,20"22,24 

The work presented herein explores the effects of Eapp and different aqueous 

electrolytes in the mobile phase on the separation of various inorganic anion (iodate, 

bromide, nitrite, and nitrate or iodate, bromate, and chlorate) mixtures by using an EMLC 

column packed with PGC. The following sections therefore examine: 1) the ability of Eapp to 

manipulate retention for optimization of such separations; and 2) the dependence of retention 

on the identity and concentration of sodium tetrafluoroborate, sodium sulfate, and sodium 

fluoride as supporting electrolytes. Both sets of findings are then examined to gain insights 

into the retention mechanism, drawing in particular on the theoretical underpinnings of ion 

exchange chromatography.25"27 
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Experimental Methods 

Chemicals and Reagents. The analytes, i.e., the potassium salts of iodate, bromate, 

chlorate, bromide, and nitrate and the sodium salt of nitrite were purchased from Aldrich 

Chemical (Milwaukee, WI). All were used at a concentration of 20 mM after dissolution in 

Milli-Q purified water (Millipore, Bedford, MA). Most of these analytes were chosen due to 

their compatibility with UV absorbance detection.28 Chlorate ion, however, was detected 

because of a change in the refractive index of the mobile phase, which gave rise to a very 

weak pseudo peak in the absorbance signal. 

The mobile phase consisted of varied concentrations of either sodium fluoride, 

sodium sulfate, or sodium tetrafluoroborate (Aldrich), which were dissolved in Milli-Q 

purified water. The mobile phases were passed through a 0.5-^im filter (GE Osmonics, 

Minnetonka, MN) prior to use. The PGC particles, 7-|_tm diameter (Hypercarb), were 

obtained from Thermo Hypersil (Bellfonte, PA). Characterizations of the as-received PGC 

by X-ray photoelectron spectroscopy agreed with previous results,20 which showed a very 

low surface oxygen content (0.14 atomic %) that was largely distributed among phenol, 

carbonyl, carboxylic acid, lactone, and quinone groups.29 

Instrumentation. The design and construction of the EMLC column has been 

described in detail elsewhere.18 In brief, the PGC stationary phase is packed inside a 

Nafion™ (Perma Pure Inc., Toms River, NJ) cation-exchange membrane, in tubular form, 

that has been inserted into a porous stainless steel column (Mott Corp., Farmington, CT). 

The Nafion™ tubing functions as: 1) a container for the PGC stationary phase, 2) an 

electronic insulator between working and auxiliary electrode, and 3) a salt bridge for ion 

transport. The porous stainless steel housing also serves as a high surface area auxiliary 
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electrode. An Ag/AgCl (saturated NaCl) electrode acts as the reference electrode and was 

placed in an electrolyte-filled reservoir surrounding the auxiliary electrode; all values of Eapp 

are reported with respect to this electrode. 

The column was attached to an Agilent Technologies (Palo Alto, CA) npodel 1050 

HPLC equipped with an autosampler, quaternary pump, and a diode array detector. The 

samples were injected at a 1.0-(iL. The elution profiles were monitored at 200 nm. The 

value of Eapp was controlled by an Amel high power potentiostat (Milan, Italy) to ±1 mV. 

All data were collected at 24 ± 1 °C. A water blank was employed to determine the void 

time in calculations of the capacity factor (&% The resolution (Rs) was estimated based on 

the 5 sigma method resident in the HP Chemstation software. By way of a working 

definition, a separation of neighboring components that has an Rs value of 1.5 or greater is 

termed "baseline resolution", whereas "effective resolution" is used to describe values of Rs 

in the range of 1.0 to 1.5.30 

Results and Discussion 

Retention as a Function of Eapp. The change in retention as a function of Eapp for a 

large number of aromatic sulfonates at carbon packings follows predictions based on 

electrostatic forces.18 In line with these earlier studies, the retention of the inorganic anions 

is also dependent on Eapp. Figure 1 presents an example of these findings, using a mixture of 

iodate, bromide, nitrite, and nitrate, four different values of Eapp (0, +200, +400, and +600 

mV), and 25 mM aqueous sodium fluoride as the supporting electrolyte. As is evident, 

increases in Eapp result in longer retention times, which is consistent with the increase in the 

positive surface charge density on the PGC packing. Elution requires ~2.5 min at the lowest 
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Figure 1. Chromatograms for a mixture of iodate, bromide, nitrite, and nitrate as a function 
of Eapp using a PGC stationary phase. The mobile phase was composed of 25 mM aqueous 
NaF at a flow rate of 0.5 mL/min. 
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value of Eapp (0 mV), and -4.7 min at the highest value of Eapp (+600 mV). The elution 

bands are also characterized by a notable level of tailing, which is often observed with PGC 

as a stationary phase.4 

In addition to affecting retention, the change in Eapp also improves the resolution of 

the separation. At 0 mV, the first three analytes (iodate, bromide, and nitrite) are poorly 

resolved from one another (Rs < 1.0), with only nitrate effectively resolved (R$ = 1.2). 

Increasing Eapp to more positive values gradually improves the resolution of the separation. 

All four anions are effectively resolved (Rs > 1.0) at +400 mV and elute in less than 3.5 min. 

Near baseline resolution is realized at +600 mV with the smallest resolution between 

bromide and nitrite (Rs = 1.1) at an elution time of ~4.7 min. Higher values of Eapp were not 

examined to avoid triggering the rapid oxidation of the PGC surface.20,31 

We also examined the separation of a mixture composed of the oxo-anions iodate, 

bromate, and chlorate. These results are shown in Figure 2 and were obtained under the 

same set of conditions used for Figure 1. Again, retention undergoes an increase as Eapp 

becomes more positive. At 0 mV, iodate and bromate are nearly resolved (Rs = 0.8), but 

chlorate is virtually undetectable in the tail of the bromate elution band. As before, the 

movement of Eapp to more positive values gradually increases the retention and resolution of 

the three components in the mixture. Baseline resolution is realized for iodate and bromate 

(Rs = 1.9), with near baseline resolution for bromate and chlorate (Rs = 1.3) at +600 mV. 

Figure 3 summaries the retention data in Figures 1 and 2 through plots of In k' vs. 

Eapp. As observed for several sample types in EMLC,18 each plot has a linear dependence. 

These dependencies can be qualitatively understood by applying the ion distribution law,24 
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Figure 2. Chromatograms for a mixture of iodate, bromate, and chlorate as a function of 
Eapp using a PGC stationary phase. The mobile phase was composed of 25 mM aqueous NaF 
at a flow rate of 0.5 mL/min. At 0 mV, CIO3" elutes in the tail of the B1O3 band. 
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+600 +400 +200 0 
Eapp vs. Ag/AgCI (sat'd NaCI), mV 

Figure 3. Dependence of In kf vs Eapp for iodate (O), bromate (•), chlorate (A), bromide 
(A), nitrite (•), and nitrate (•). Error bars are smaller than the size of the data points. Data 
from Figures 1 and 2. 
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which details the influence of a potential difference on the equilibrium concentration of ions 

within the region between the potential difference.32 

The results in Figure 3 also reveal that the EMLC-based retention sensitivity, S, 

which is defined as the slope of the plot, for the six analytes is comparable. This conclusion 

is supported by the data presented in Table 1, which includes the R2 value of each plot. The 

Table shows a maximum difference in S of less than 50%. This agreement lends support to 

the argument that the dependence of inorganic anion retention with respect Eapp is controlled 

primarily by the stationary phase surface charge density. In other words, ions with the same 

charge should be affected in the same manner via the ion distribution law.32 The slight 

variations in the sensitivities for ions of the same charge are attributed to differences in their 

specific (i.e., chemical) interactions with PGC (see last section). Experiments using 50 mM 

NaF as the eluent (data not presented) also showed a linear dependence, though with much 

shorter retention times. The next section examines the importance of the supporting 

electrolyte in more detail. 

Retention as a Function of Electrolyte Identity and Concentration. Three 

different salts were examined as mobile phase additives: sodium tetrafluoroborate, sodium 

sulfate, and sodium fluoride. These salts served as the supporting electrolyte in the mobile 

phase for control of Eapp and were tested for their ability to function as an electronic 

competitor for retention manipulation. Each electrolyte was used at a concentration of 10, 

25, and 50 mM. Figure 4 shows the chromatograms for the separation of iodate, bromide, 

nitrite, and nitrate as a function of the identity and concentration of the different supporting 

electrolytes. These data were collected with Eapp set at +600 mV, as guided by the data in 

Figure 1. These results yield three immediate observations. First, fluoride is the most 



www.manaraa.com

57 

Table 1. Sensitivities® (S) of retention for a series of 
inorganic anions to changes in Eapp.h 

Analyte S ( x  103) R2 

N02" 2.34 (0.05)' 0.996 
C103- 1.98 (0.04) 0.997 
103- 2.89 (0.12) 0.961 
N03" 2.10(0.05) 0.994 
Br03" 2.03 (0.03) 0.997 
Br' 2.59 (0.06) 0.992 
aThe sensitivity is defined as the slope of a plot of In k' vs. 
In [£]. 
bData from Figures 1 and 2. 
"Standard error from the linear regression listed in 
parentheses. 
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Figure 4. Chromatograms for a mixture of iodate, bromide, nitrite, and nitrate as a function 
of eluent identity and concentration using a PGC stationary phase at Eapp of +600 mV. The 
mobile phase was composed of aqueous sodium tetrafluoroborate, sodium sulfate, or sodium 
fluoride at either 10,25, or 50 mM. The flow rate was 0.5 mL/min. 
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effective of the three anionic eluents in resolving the mixture. Second, tetrafluoroborate is 

the strongest eluting anion, followed by sulfate and then fluoride. Third, analyte retention in 

all three electrolytes increases with decreasing concentration. 

With respect to resolution, Figure 4 shows that three (iodate, bromide, and nitrite 
I 

ions) of the four analytes co-elute with sodium tetrafluoroborate; only nitrate is effectively 

resolved (R$ = 1.0). With sodium sulfate, the separation approaches, but does not quite reach 

baseline resolution for the four analytes. The mixture is effectively resolved when carrying 

out the separation with fluoride as the eluent (Rs >1.0 for all concentrations). Unfortunately, 

the tailing commonly found with PGC as a stationary phase4 is particularly evident in these 

separations. We attribute this observation to the weaker elution strength of fluoride relative 

to the two anionic eluents. These results also suggest that running separations at lower 

supporting electrolyte concentrations may further improve sample resolution, recognizing, 

however, that too low of an electrolyte concentration may compromise the ability to control 

Eapp. 

Mechanistic Insights. In addition to serving as a basis for the design of protocols for 

manipulating the separation, the data in the last two sections provide mechanistic insights 

into the retention of these analytes at PGC. At a conventional anion exchange column,9 the 

elution order is IO3" < NO2" < Br" < NO3". The elution order, for example, in Figure 4 is IO3" 

< Br" < NO2" < N03". Although not in complete agreement, a comparison of elution orders 

suggests that the retention of these analytes at PGC has mechanistic similarities to that in ion 

exchange chromatography. 

Takeuchi et al.9 also recently concluded that the retention of inorganic anions by PGC 

exhibits ion-exchange characteristics. This assertion was based on an investigation of the 
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dependence of In k' on In [£], where [E\ is the concentration of an ionic eluent added to the 

mobile phase. A plot of In k' vs. In [E] at a resin-based ion exchange packing generally 

follows a linear dependence with a slope that often, but not always, correlates with the ratio 

of the analyte-to-eluent charge.27,28 A classic example of this dependence was reported by 

Rocklin et al.33 Rocklin and coworkers investigated the effect hydroxide ion concentration 

has on inorganic anion retention at an anion exchange resin, and found slopes for plots of 

In k'vs. In [£] for chloride, nitrate, sulfate, and fumarate equal to -1.03, -0.95, -2.10, and 

-2.03, respectively. Takeuchi et al.9 determined that the elution of iodate and iodide at PGC 

vs. sulfate concentration resulted in slopes close to the expected value of-0.5, i.e., -0.58 for 

iodate and -0.50 for iodide. 

An analysis of the data in Figure 4 also shows the existence of a linear relationship 

between In k' and In [E] for each analyte-eluent combination. The results of this analysis are 

presented in Figure 5, with each plot having a R2 value greater than 0.99. These 

dependencies further confirm the importance of electrostatic interactions to the EMLC-based 

separation of these compounds. Interestingly, the slopes with fluoride and tetrafluoroborate, 

the two singly charged eluents, are roughly the same (Figure 5A). Moreover, the slopes for 

bromide, nitrite, and nitrate with the doubly charged sulfate as the eluent are all notably 

lower than those the tetrafluoroborate and fluoride eluents, and can also be loosely grouped 

together (Figure 5B). Iodate, however, has a much steeper slope than those for bromide, 

nitrite, and nitrate. Importantly, the slopes in Figure 5 A are generally steeper than those in 

Figure 5B, which is qualitatively consistent with the correlations expected for analyte:eluent 

charge ratios. These results support the claim that the EMLC-based separation of these 

analytes has ion exchange characteristics. 
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C 

Figure 5. Dependence of In k! vs. In [E\. Plot A: iodate (•), bromide (•), nitrite (A), and 
nitrate (•) with NaF; and iodate (•), bromide (•), nitrite (•), and nitrate (O) with NaBF^ 
(iodate, bromide, and nitrite coelute with NaBF^. Plot B: iodate (•), bromide (•), nitrite 
(A), and nitrate (•) with NazSC^. All eluent concentrations are molar. Error bars are 
smaller than the size of the data points. Data from Figure 4. 
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Two additional observations develop from a more exacting analysis of the data in 

Figure 5. This analysis is presented in Table 2 as the slope of the plots, which are listed in 

increasing analyte elution order for each supporting electrolyte. First, one of the singly 

charged analyte-eluent combinations (iodate-fluoride) has a slope that is experimentally 

identical to the analyte:eluent charge ratio. The other slopes for fluoride as the eluent, the 

bromide-, nitrite-, and nitrate-fluoride combinations, deviate by as much as-31%. The 

iodate-, bromide-, and nitrite-tetrafluoroborate combinations also have slopes within +10% of 

expectations; the deviation for the nitrate-tetrafluoroborate combination, however, is -17%. 

Interestingly, the data with the doubly charged sulfate as the eluent shows both significant 

positive (+26% with iodate) and negative (e.g., -58% for nitrite) deviations. Takeuchi et al9 

also found a positive deviation (+16%) for iodate with sulfate as the eluent. 

Second, the magnitude of the deviation in the plots of In k' vs. In [E] largely correlate 

with the extent of analyte retention. For example, nitrate is the most strongly retained 

analyte when fluoride is used as the supporting electrolyte. Nitrate also has the largest 

departure from the slope based on the analyte:eluent charge ratio. Nitrite follows nitrate in 

elution order with fluoride as the eluent, and ranks second in terms of the departure from the 

charge ratio expectation. An examination of the data for bromide and iodate completes the 

trend. Most of the data with the other two eluents exhibit the same trends. Only the data 

with nitrate and nitrite as the analytes and sulfate as the eluent falls outside of this 

correlation, but only by an amount slightly greater than the uncertainty in the data. 

Deviations from charge ratio expectations in plots of In k' vs. In [E\ can in some cases 

be accounted for by the dependence of the activity coefficients of ions in the mobile phase on 

eluent concentration.26,33 An analysis to correct for this effect uses the slope from a plot of 
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Table 2. Slopes from plots of In k' vs In [£] with Eapp set at 
+600 mV.a 

Supporting electrolyte/eluent 
Analyte NaF Na^SO^ NaBF^ 
I03 -1.01 (0.02)" -0.63 (0.03) -1.09° (0.03) 
Br -0.77 (0.01) -0.31 (0.01) -1.09e (0.03) 
N02" -0.72(0.01) -0.21 (0.01) -1.09° (0.03) 
N03" -0.69(0.01) -0.25(0.01) -0.83 (0.01) 

theoretical 
prediction J 4X5 -1 
"Data from Figure 4. 
^Standard error from the linear regression listed in parentheses. 
"Since all three analytes coeluted, k' was calculated based on peak 
height of the combined peak. 
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In (y^/y~ea'Ze ) vs. In [£], where ya and ye are the respective activity coefficients for the 

analyte and eluent, and za and ze are the respective analyte and eluent charges.33 

Nevertheless, the results from corrections to the data in Figure 5, which used literature 

activity coefficients,34 only marginally improve the correlations between the expected and 

observed slopes. For example, the activity coefficient correction calculated for fluoride as 

the eluent equals -0.07 and that with sulfate as the eluent is -0.10. Thus, the slopes 

corrected for differences in activity coefficients with fluoride as the eluent continue to show 

large negative deviations (e.g., -24% for nitrate), whereas both large positive (+44% for 

iodate) and negative (-30% for nitrate) deviations persist in the data with sulfate as the 

eluent. 

There is, however, an important difference in separations using ion-exchange resins 

and those based on EMLC that should be considered in this analysis. In ion exchange 

chromatography, the fixed charge groups on the resin define the surface charge density, 

which dictates the surface potential and therefore the potential gradient within the interphase 

between the resin and bulk solution. Importantly, the fixed charge density limits changes in 

the activity coefficients of both the eluent and analyte in the stationary phase when the eluent 

concentration in the mobile phase is low (less than -100 mM)27 with respect to the 

concentration of fixed charges (-0.1 meq/g for low capacity resins and ~4 meq/g for high 

capacity resins)28 on most ion exchange resins. 

The surface charge density of the packing in EMLC develops differently. In EMLC, 

it is the potential applied to the packing, and not the surface charge density, that is directly 

controlled by the potentiostat. The charge density on the packing surface and the gradient in 
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the potential in the interphase reflect the response of the interphase to the applied potential. 

Estimates to be reported elsewhere,22 which extract the surface charge density at PGC as a 

function of Eapp between +50 and-150 mV, yield a value of -1.3 pC/cm2 when extrapolated 

to +600 mV. This value is comparable to that at electrified mercury surfaces with fluoride as 

the electrolyte anion. Based on the surface area of PGC (-120 m2/g),4 this charge density 

translates to -20 (aeq/g. The concentration of charges at PGC is therefore much less than that 

found in exchange resins,27 arguing that the basis for the assumption applied to ion exchange 

resins cannot reliably be applied to EMLC. 

Such an analysis becomes even more suspect if an anion interacts with PGC by both 

nonspecific (electrostatic) and specific (chemical) interactions. The correlation between the 

magnitude of the deviation with elution time lends support to this concern as specific 

interactions often alter the charge density of an adsorbate. In other words, the theoretical 

framework behind the mechanistic analysis of the plots of In k' vs. Eapp or In [£] in the earlier 

Figures is based solely on electrostatic interactions. However, if both electrostatic and 

specific interactions contribute to retention, then factors such as the desolvation of an analyte 

when specifically adsorbing on the surface can result in a dramatic change in the structure 

and electrostatics at the interphase of the packing, complicating an objective treatment of the 

activity coefficients of the species in the interphase. 

Complex retention mechanisms are not uncommon occurrences in ion exchange 

chromatography and can be elucidated, for example, by examining the temperature 

dependence of retention under varying mobile phase compositions.35'36 By employing 

temperature as an adjustable parameter, a van't Hoff-type analysis can be utilized to quantify 
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both the enthalpic and entropie contributions to retention, paralleling our recent study on the 

separation of organic dianions.21 Work to this end is underway. 

Conclusion 

The manipulation and optimization of inorganic anion retention on PGC through 

changes in both the mobile phase composition and the Eapp of the stationary phase is 

demonstrated. The choice of an electronic competitor and its concentration in the mobile 

phase has a profound impact on the resolution of the separation, with fluoride proving the 

most effective eluent of the three electronic competitors tested. Results also showed that 

these separations could be manipulated by changes in Eapp. From a mechanistic perspective, 

plots of In k' were found to be linearly dependent on both Eapp and In [E\. This behavior can 

be described in the context of an ion-exchange mechanism between analyte ions in the 

mobile phase and eluent ions in the interphase formed on the surface of PGC. Deviations 

from the expectations for the slopes of the In k' vs. In [£] plots were attributed to effects 

specific interactions, in addition to electrostatic interactions, on retention. Efforts to test this 

conclusion are presently being designed. 

Acknowledgments 

This work was supported by the US Department of Energy through the Office of 

Basic Energy Sciences. The Ames Laboratory is operated by Iowa State University under 

contract W-7405-eng-82. 



www.manaraa.com

67 

References 

(1) Knox, J. H., Wan, Q.-H. Chromatographic 1996, 42, 83-88. 

(2) Okamoto, T., Isozaki, A., Nagashima, H. J. Chromatogr. A 1998, 800,239-245. 

(3) Gennaro, M. C., Marengo, E., Gianotti, V. J. Liq. Chromatogr. & Rel. Technol. 2000, 
I 

23,2599-2613. 

(4) Knox, J. H.; Ross, P. In Adv. Chromatogr. ; Brown, P. R., Grushka, E., Eds.; Marcel 

Dekker, Inc.: New York, 1997; Vol. 37, pp 73-119. 

(5) Ross, P. LC/GC 2000,18,14-27. 

(6) Gu, G.; Lim, C. K. J. Chromatogr. 1990,515,183-192. 

(7) Lim, C. K. Biomed. Chromatogr. 1989, 3, 92-93. 

(8) Elfakir, C., Chaimbault, P., Dreux, M. J. Chromatogr. A 1998, 829,193-199. 

(9) Takeuchi, T.; Kojima, T.; Miwa, T. J. High Resol. Chromatogr. 2000, 23, 590-594. 

(10) Harnisch, J. A.; Porter, M. D. Analyst 2001,126, 1841-1849. 

(11) Ge, H.; Wallace, G. G. J. Liq. Chromatogr. 1990,13, 3245-3260. 

(12) Ge, H.; Teasdale, P. R.; Wallace, G. G. J. Chromatogr. 1991, 544, 305-316. 

(13) Nagaoka, T.; Fugimoto, M.; Nakao, H.; Kakuno, K.; Yano, J.; Ogura, K. J. 

Electroanal. Chem. 1994,364,179-188. 

(14) Mitakos, A.; Panderi, I. Anal. Chim. Acta 2004,505,107-114. 

(15) Nikitas, P. J. Electroanal. Chem. 2000, 484, 137-143. 

(16) Ting, E.-Y.; Porter, M. D. Anal. Chem. 1997, 69, 675-678. 

(17) Ting, E.-Y.; Porter, M. D. J. Electroanal. Chem. 1997, 443,180-185. 

(18) Ting, E.-Y.; Porter, M. D. Anal. Chem. 1998, 70,94-99. 

(19) Ting, E.-Y.; Porter, M. D. J. Chromatogr. A 1998, 793, 204-208. 



www.manaraa.com

68 

(20) Deinhammer, R. S.; Ting, E.-Y.; Porter, M. D. Anal. Chem. 1995, 67,237-246. 

(21) Ponton, L. M.; Keller, D.; Porter, M. D. In preparation. 

(22) Keller, D. W.; Porter, M. D. In preparation. 

(23) Ponton, L. M.; Porter, M. D. Anal. Chem., accepted. 

(24) Takano, H.; Porter, M. D. In New Directions in Electroanalytical Chemistry //; 

Leddy, J., Vanysek, P., Porter, M. D., Eds.; The Electrochemical Society, Inc.: 

Seattle, WA, 1999; Vol. 99-5, pp 50-60. 

(25) Stahlberg, J. Anal. Chem. 1994, 66,440-449. 

(26) Stahlberg, J. J. Chromatogr. A 1999,855,3-55. 

(27) Walton, H. F.; Rocklin, R. D. Ion Exchange in Analytical Chemistry, CRC Press, 

Inc.: Boca Raton, 1990. 

(28) Fritz, J. S.; Gjerde, D. T. Ion Chromatography, 3rd éd.; Wiley-VCH: New York, 

2000. 

(29) Kinoshita, K. Carbon: Electrochemical and Physicochemical Properties', John Wiley 

& Sons: New York, 1988. 

(30) Poole, C. F. The essence of chromatography, Elsevier: Boston, 2003. 

(31) Tomkvist, A.; Markides, K. E.; Nyholm, L. Analyst 2003,128, 844-848. 

(32) Oldham, K. B.; Myland, J. C. Fundamentals of Electrochemical Science; Academic 

Press, Inc.: San Diego, 1994. 

(33) Rocklin, R. D.; Pohl, C. A.; Schibler, J. A. J. Chromatogr. 1987, 411, 107-119. 

(34) Parsons, R. Handbook of Electrochemical Constants', Academic Press, Inc.: New 

York, 1959. 

(35) Hatsis, P.; Lucy, C., A. Analyst 2001,126,2113-2118. 



www.manaraa.com

69 

Hatsis, P.; Lucy, C., A. J. Chromatogr. A 2001,920, 3-11. 



www.manaraa.com

70 

CHAPTER 4. HIGH SPEED ELECTROCHEMICALLY MODULATED 
LIQUID CHROMATOGRAPHY 

A paper accepted for publication in Analytical Chemistry1 

Lisa M. Ponton2,3 and Marc D. Porter3,4 

Abstract 

The performance advantages of carrying out electrochemically modulated liquid 

chromatography (EMLC) at elevated temperatures and mobile phase flow rates are 

investigated. EMLC has the unique ability to manipulate analyte retention and enhance 

separation efficiencies through changes in the potential applied to a conductive stationary 

phase. Operation of high performance liquid chromatography systems at elevated column 

temperatures also provides pathways to improve chromatographic performance by enhancing 

analyte diffusivity and facilitating the use of higher mobile phase flow rates than 

conventionally attainable. The results show that performing EMLC separations at elevated 

temperatures (e.g., 100 °C) reduces the analysis time of a mixture of aromatic sulfonates in a 

mixed mobile phase by more than a factor of 20. Moreover, use of higher operating 

temperatures enables the separation of this mixture with an entirely aqueous mobile phase in 

less than 2 min. 

1 Reproduced with permission from Analytical Chemistry © 2004 American Chemical 
Society 

2 Primary researcher and author 
3 Institute of Combinatorial Discovery, Chemistry Department, Iowa State University, and 

Ames Laboratory-USDOE Ames, IA 50011 
4 Author for correspondence 
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Introduction 

This paper investigates the advantages of performing separations using 

electrochemically modulated liquid chromatography (EMLC) at elevated column 

temperatures. EMLC is a unique chromatographic technique that allows for the manipulation 

of analyte retention through changes in the potential applied (Eapp) to conductive stationary 

phases, such as porous graphitic carbon (PGC). This capability is realized by fashioning a 

high performance liquid chromatography (HPLC) column into an electrochemical cell and 

utilizing the packing as both a chromatographic stationary phase and as a working electrode. 

As a consequence, a change in Eapp alters the effective surface composition of the stationary 

phase, which, in turn, affects analyte retention.1 Several laboratories,2"5 including our own,6" 

10 have demonstrated that EMLC can be utilized for the separation of a wide range of analyte 

mixtures (e.g., aromatic sulfonates,10 monosubstituted benzenes,9 protonated pyridines and 

anilines,11 corticosteroids,7 benzodiazepines,6 short chain alkanoic acids,12 and metal ion 

complexes13). 

Recent studies have shown that elevated column temperatures can also be used to 

manipulate analyte retention in HPLC by significantly reducing analysis times while 

maintaining the effectiveness of a separation.14"16 This observation was theoretically 

predicted several years ago17'18 and comes about because of three different temperature-

dependent phenomena. First, retention in most reversed phase separations is an exothermic 

process.19"21 An increase in column temperature therefore leads to a decrease in elution time. 

Second, the viscosity of most mobile phases decreases with increasing temperature. As a 

consequence, the back pressure of the HPLC system decreases, enabling operation at higher 

flow rates. Third, higher column temperatures increase analyte diffusivity and desorption 
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kinetics. Enhanced difïusivity increases the efficiency of a separation, by lowering the C-

term in the van Deemter equation,22 which counters the loss in efficiency that arises at higher 

mobile phase flow rates. 

Another notable advantage that derives from operation at elevated column 

temperatures is the decrease in the dielectric constant for water with increasing temperature. 

That is, water behaves more like a hydrophobic solvent with increasing temperature.23 For 

example, the dielectric constant for water is -55 at 55 °C, and is close to that of methanol 

(-33) at 200 °C.24 This behavior leads to the possibility of carrying out separations using an 

entirely aqueous mobile phase, with associated reductions in toxicity, flammability, and 

waste disposal costs.23 

Using elevated column temperatures in EMLC also has a practical electrochemical 

advantage: a decrease in the resistivity of electrolyte solutions due to an increase in 

electrolyte diffusion.25 Because EMLC is a hybrid of HPLC and electrochemistry, the 

column design must address the divergent requirement of the two techniques, namely, the 

ratio of the column dead volume to the surface area of the stationary phase. The resolution of 

a separation is enhanced by minimizing this ratio, i.e., a large stationary phase surface area 

and a small dead volume. However, in order to avoid high resistance in the mobile phase and 

resulting challenges of controlling Eapp, this ratio should be maximized, i.e., a small electrode 

surface area and a large solution volume. Strategies that provide a means to decrease mobile 

phase resistance, like operation at elevated column temperatures, therefore have the potential 

to optimize the electrochemical behavior (e.g., time to equilibrate upon a change in Eapp) of 

an EMLC column while maintaining effective chromatographic performance. 
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Herein, we describe the findings from an investigation aimed at determining if 

operation at elevated column temperatures improves the chromatographic and 

electrochemical performance of EMLC columns. The following sections detail the requisite 

hardware for such experiments, and the results from assessments using a mixture of aromatic 
I 

sulfonates (ASFs). The feasibility of separating such mixtures in an entirely aqueous mobile 

phase is also investigated, along with a brief examination of issues related to the thermal 

stability of the column packing. 

Experimental Methods 

Chemicals and Reagents. Benzenesulfonic acid (BS), methylbenzenesulfonic acid 

(MBS), /7-chlorobenzenesulfonic acid (CBS), sodium 1,5-naphthalenedisulfonate (1,5-NDS), 

and sodium 2,6-naphthalenedisulfonate (2,6-NDS) were purchased from Aldrich Chemical 

(Milwaukee, WI). Analyte solutions were prepared with 20 p.M concentrations in 0.1 M 

aqueous lithium perchlorate (Aldrich). 

Two mobile phases were employed in this study. Mobile phase A consisted of 0. 1 M 

lithium perchlorate in a 95:5 v/v mixture of high purity water (Milli-Q system, Millipore, 

Bedford, MA) and HPLC grade acetonitrile (Fisher Scientific, Pittsburgh, PA). Mobile phase 

B consisted of 0.1 M lithium perchlorate in high purity water. Both mobile phases were 

passed through a 0.5-pm filter (GE Osmonics Inc., Minnetonka, MN) prior to use. 

Hypercarb, 7-jj.m porous graphitic carbon (PGC) particles, were obtained from 

Thermo Hypersil (Bellfonte, PA). Characterizations by X-ray photoelectron spectroscopy 

agreed with previous results10 and showed that as-received PGC exhibits a very low surface 



www.manaraa.com

oxygen content (0.14 atomic %), which is largely distributed among phenol, carbonyl, 

carboxylic acid, lactone, and quinone groups.26 

Instrumentation. @1 EMLC Column. The design and construction of the EMLC 

column has been described in detail elsewhere.8 Briefly, a stationary phase such as PGC is 

packed inside a Nafion™ (Perma Pure Inc., Toms River, NJ) cation-exchange membrane 

fitted into a porous stainless steel column (Mott Corp., Farmington, CT). The porous 

stainless steel housing serves as a high surface area auxiliary electrode. The Nafion™ 

membrane serves three functions: (1) a container for the GC stationary phase, (2) an 

electronic insulator between working and auxiliary electrode, and (3) a salt bridge for ion 

transport. An Ag/AgCl (saturated NaCl) reference electrode was placed in a reservoir 

surrounding the auxiliaiy electrode. This assembly is represented in Figure 1 as the EMLC 

column. 

(ii) EMLC System. The column was attached to an Agilent Technologies (Palo Alto, 

CA) model 1050 HPLC system equipped with a quaternary pump and a diode array detector. 

The samples were injected via a Rheodyne model 7125 injector with a 5.0-p.L loop (Cotati, 

CA), and the elution profiles were monitored at 220 nm. The potential applied to the 

stationary phase was controlled by an Amel (Milan, Italy) potentiostat to ±1 mV. 

(iii) Temperature Control Hardware. The experimental setup for the control of 

temperature is illustrated in Figure 1, and parallels several of the design elements devised by 

Carr and co-workers.14,16 The temperature (±0.2 °C) was controlled by immersion of the 

EMLC column and a 20-cm length of stainless steel tubing connected to the column inlet, all 

of which were surrounded by a latex bag (not shown), in a thermostated water bath 
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Figure 1. Instrument schematic for high speed EMLC. 



www.manaraa.com

76 

(Polyscience, Niles, IL) filled with 50:50 (v/v) ethylene glycol:water. The 20-cm length of 

stainless steel tubing was placed in the water bath in order to temperature-equilibrate the 

mobile phase and sample before entering the column. There was no detectable evidence of 

band broadening due to thermal mismatch between the entering solution and the EMLC 

column. This result indicates the preheating setup performed adequately.27 Upon leaving the 

column, the mobile phase passed through a circulating cooling bath held at room temperature 

prior to entering the detector to prevent thermal noise in the detector. An additional 20 bar of 

back pressure was applied in-line after the detector through a restrictor to avoid boiling the 

mobile phase while in the column. 

With this setup, the highest accessible column temperature was 100 °C, a limit 

defined by the evaporative loss of the electrolyte solution in the reservoir that houses the 

reference electrode. This temperature limitation, coupled with the pressure cut-off of the 

chromatographic pumping system, placed an upper limit of 2.0 mL/min for the flow rate of 

both mobile phases. That is, increasing the column temperature markedly reduced the 

system back pressure. At 25.0 °C, for example, the back pressure for the system was 

240 bar, whereas that at 100.0 °C was only 125 bar. This result is qualitatively in line with 

tabulations of the observed decrease in mobile phase viscosity with increases in 

temperature.24 Higher temperatures, and therefore higher flow rates, would be accessible if 

the reservoir were designed to enable modest pressurization to prevent boil-off of the 

electrolyte solution. Work to this end is underway. 

Data Treatment. A water blank was employed to determine the void time for 

calculations of the capacity factor, k'. Retention times were determined from the first 

statistical moment of the elution profile in order to compensate for band asymmetry 28 Three 
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to seven replicate injections were used for the calculation of k'. Retention times typically 

exhibited less than a 2% relative standard deviation (% RSD) over the course of 2-3 hrs of 

experimentation. The resolution of a separation was calculated based on the retention time of 

an elution band and its width at 4.4% of the height by using the 5 sigma method resident in 

the software of the HP ChemStation. All values for Eapp are reported with respect to the 

potential of Ag/AgCl (saturated NaCl) at 25 °C by accounting for the temperature 

dependence of its formal reduction potential, which is -0.83 mV/°C between 25 and 95 °C.29 

Results and Discussion 

Effects of Egpp. For comparison to the temperature dependence studies that follow, 

Figure 2 demonstrates the ability of EMLC to manipulate the retention characteristics of 

PGC at 25.0 °C through changes in Eapp. These results were obtained at values of Eapp from 

+100 to -500 mV, using the mixed solvent mobile phase A. The mixture contained three 

monovalent anions (BS, MBS, and CBS) and a divalent anion (1,5-NDS). As is evident, all 

four analytes exhibit a marked decrease in retention as Eapp becomes more negative. This 

change is particularly apparent when comparing the chromatogram obtained at +100 mV 

with that observed at -500 mV. At +100 mV, the mixture requires ~23 min for complete 

elution. The separation at -500 mV, however, is complete in less than 9 min. This decrease 

translates to a reduction in overall runtime by a factor of 2.4. 

There are also notable differences in the resolution and elution order of the 

separations. BS and MBS are baseline resolved at +100 mV, whereas CBS and 1,5-NDS 

coelute. All four components are baseline resolved at -100 mV. At -300 mV, however, 
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Figure 2. Dependence of the retention of BS, MBS, CBS, and 1,5-NDS on Eapp at a flow 
rate of 0.5 mL/min, and a mobile phase composed of 0.1 M lithium perchlorate and 
5% acetonitrile in water, and a temperature of 25.0 °C. (A) +100 mV; (B) -100 mV; 
(C) -300 mV; and (D) -500 mV. Inset:  Plot  In k'  vs.  Ea p p  for BS (•) ,  MBS (•) ,  CBS (A),  
and 1,5-NDS (O). 
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MBS and 1,5-NDS coelute. The separation again improves at -500 mV; BS and CBS are 

baseline resolved, with a resolution of 1.2 for 1,5-NDS and MBS. 

The inset in Figure 2 summarizes the retention dependence of all four analytes 

through plots of In k' vs. Eapp. The error bars for the values of In k' are smaller than the data 

points, and represent one standard deviation calculated from three or more replicate 

injections. These results demonstrate two key aspects of the EMLC-based separation of 

these compounds. First, the retention of each analyte exhibits a linear dependence with 

respect to Eapp. Such a dependence reflects how Eapp affects the electrostatic interactions 

between an ionic species and a charged stationary phase via the ion distribution law.8,30 

Second, the slope of such a plot represents the sensitivity of retention to changes in 

Eapp. The plots show that the divalent anion 1,5-NDS is roughly twice as sensitive to changes 

in Eapp when compared to the three monovalent anions: BS, MBS, and CBS. These 

differences are quantified by the sensitivity summary presented in column A of Table 1. In 

this case, the difference results from the valency term in the ion distribution law,30 which 

predicts that the effect of an electric field on the concentration distribution of a dianion will 

be twice as large as that on a monoanion. The differing sensitivity is reflected by the change 

in elution order. At+100 mV, the order of increasing elution time is 

BS<MBS<CBS«1,5-NDS. The elution order, however, changes as Eapp becomes more 

negative due to the greater sensitivity of 1,5-NDS. As a result, the elution order at -500 mV 

is BS<1,5-NDS<MBS<CBS. The sensitivity plots also suggest that a baseline separation 

with a runtime that is ~50% less than the runtime observed at -100 mV may be possible at 

more negative values of Eapp (e.g., -700 mV). Taken together, these results demonstrate that 
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Table 1. Slopes from the plots of In k'vs. Eapp (10"3 mV"1). 

Experimental 
Conditions A B C 

Flow Rate 
Mobile Phase 
Temperature 

0.5 mL/min 
A 

25 °C 

2.0 mL/min 
A 

100 °C 

2.0 mL/min 
B 

100 °C 

Analyte 

BS 1.58 ±0.05 2.00 ± 0.03 1.06 ±0.05 

MBS 1.62 ±0.05 1.80 ±0.02 1.03 ±0.05 

CBS 1.71 ±0.05 1.87 + 0.02 1.01 ±0.05 

1,5-NDS 3.76 ±0.12 4.46 ± 0.07 2.57 ±0.12 

2,6-NDS ND- 4.19 ±0.08 ND-

*ND = not determined 
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the analytical figures of merit in a separation (i.e., resolution and retention time) can be 

effectively and easily manipulated by EMLC.8 

Effects of Temperature. Figure 3 presents a series of chromatograms that were 

obtained using the same analyte mixture while elevating the column temperature. 

Chromatograms A-C were collected using mobile phase A at 25.0, 61.5, and 100.0 °C with 

Eapp set at +100 mV with respect to the Ag/AgCl (saturated NaCl) reference electrode at each 

column temperature. Correction for the temperature dependence of the reference electrode 

yields values for Eapp of+100, +70, and +40 mV for the above temperatures, respectively. 

The flow rate for the mobile phase was 0.5 mL/min. We note that Chromatogram A in 

Figure 3 was obtained at the same temperature and Eapp as Chromatogram A in Figure 2, but 

was collected after 48 hrs of continuous operation over a range of elevated temperatures (see 

below). 

As is evident in Chromatograms A-C, increasing temperature clearly reduces the 

overall elution time. The change from 25.0 to 61.5 °C decreases the runtime from -20 min to 

-12 min, which is further reduced to less than 7 min at 100.0 °C. The decrease in runtime at 

100.0 °C represents a reduction by a factor of 3.1 with respect to that at 25.0 °C. 

Two additional observations can be drawn from these data. First, the temperature-

induced decreases in the retention time of all four analytes are greater in magnitude than can 

be accounted for by the temperature dependence of Eapp. For instance, the In k' vs. Eapp plot 

for the separations at 25.0 °C (Figure 2) predicts a decrease in k' by a factor of 1.06 for CBS, 

based on a change in Eapp from +100 to +70 mV. The observed decrease in k' at 61.5 °C and 

+70 mV (Chromatogram B in Figure 3), however, is a factor of 1.84. A comparable analysis 
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Figure 3. Temperature dependence for the EMLC separation of a mixture of BS, MBS, 
CBS, and 1,5-NDS with a mobile phase composed of 0.1 M lithium perchlorate and 5% 
acetonitrile in water. Chromatogram (A): 0.5 mL/min at 25.0 °C, and +100 mV; 
(B): 0.5 mL/min at 61.5 °C, and +70 mV; (C): 0.5 mL/min at 100.0 °C, and +40 mV; (D): 1.0 
mL/min at 100.0 °C, and +40 mV; (E): 1.5 mL/min at 100.0 °C, and +40 mV; and 
(F): 2.0 mL/min at 100.0 °C, and +40 mV. 
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of the data for 1,5-NDS yields an expected decrease in k' of 1.17 for a 30-mV drop in Eapp at 

25.0 °C, whereas the retention at 61.5 °C shows a decrease for k' of 1.73. These differences 

in expected decrease of k' are attributed primarily to the impact of an increased column 

temperature on an exothermic retention process,19"21 which would further decrease the time 

required for elution.31 

Second, the separation at 61.5 °C has marginally better resolution than those at either 

25.0 or 100.0 °C. This observation suggests that temperature may provide a useful means to 

manipulate the selectivity of an EMLC-based separation in a manner analogous to that in 

classical ion exchange chromatography, where differences in the enthalpy of retention result 

in changes in resolution as temperature is increased.32'33 Further studies are nevertheless 

required in order to fully explore this phenomenon. 

Next, the effects of the mobile phase flow rate on performance were examined. 

These results are shown in chromatograms C-F in Figure 3, which were obtained at an Eapp of 

+40 mV, a column temperature of 100.0 °C, and flow rates of 0.5,1.0,1.5, and 2.0 mL/min, 

respectively. The chromatograms show that an increase in flow rate clearly reduces the time 

required for the separation. That is, the total separation time is reduced from ~7 to ~2 min 

when changing the flow rate from 0.5 to 2.0 mL/min at 100.0 °C. The improvement at 2.0 

mL/min represents a reduction in runtime by a factor of 10 in comparison to the 

chromatogram collected under a more typical set of operational conditions (i.e., a column 

temperature of 25.0 °C and mobile phase flow rate of 0.5 mL/min, chromatogram A). There 

are also some interesting, but subtle increases in the resolution of the separation in the elution 
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of CBS and 1,5-NDS, shown in chromatograms D-F, that we do not have an explanation for 

at this time. 

Effects of Temperature in Conjunction with Eapp. The last two sections have 

demonstrated that Eapp and temperature can each be exploited to improve EMLC 

performance. This section investigates how the manipulation of Eapp at elevated 

temperatures can be utilized to enhance chromatographic effectiveness. This study therefore 

examined the influence of Eapp on a separation performed at 100.0 °C using a flow rate of 2.0 

mL/min. 

Figure 4 presents the resulting chromatograms that were obtained for a five-

component mixture of aromatic sulfonates (BS, MBS, CBS, 1,5-NDS, and 2,6-NDS) using 

mobile phase A at four different values of Eapp. +40, -160, -360, and -560 mV. 

Chromatogram A is the separation of the mixture at +40 mV. All five components are 

baseline resolved, with complete elution requiring less than 8 min. Chromatogram B reveals 

that baseline resolution can be maintained, while reducing the runtime to ~3 min by changing 

Eapp to -160 mV. Further decreases in runtime are realized by lowering Eapp to -360 and -

560 mV, as shown more clearly in the lower Figure 4 inset. At -360 mV, the runtime 

reduces to -1.6 min. Decreasing Eapp to -560 mV further reduces the runtime to -0.9 min. 

The resolution of the separation, however, has degraded in both cases. At -360 mV, 1,5-

NDS strongly overlaps with MBS, while CBS and 2,6-NDS are only partially resolved at -

560 mV. 

The upper inset in Figure 4 shows plots of In k' vs. Eapp for the five analytes at 

100.0 °C. Like the data in Figure 2, these plots reveal: 1) the existence of a linear 

relationship between In k' and Eapp\ and 2) the sensitivity of the dianions 1,5-NDS and 
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Figure 4. Dependence of retention of BS, MBS, CBS, 1,5-NDS, and 2,6-NDS on Eapp at a 
flow rate of 2.0 mL/min with a mobile phase composed of 0.1 M lithium perchlorate and 
5% acetonitrile in water and a temperature of 100.0 °C. (A) +40 mV; (B) -160 mV; (C) -360 
mV; and (D) -560 mV. Inset: In k' vs. Eapp BS (•), MBS (•), CBS (A), 1,5-NDS (O), and 
2,6-NDS (X). 
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2,6-NDS is roughly twice that of the monoanions BS, MBS, and CBS (Table 1, column B). 

The influence of Eapp on retention at 100.0 °C therefore continues to follow the predictions 

based on electrostatic interactions. Again, the reduction in runtime, which in this case is a 

factor of ~9, reflects the high sensitivity of the divalent anion 2,6-NDS to changes in Eapp. 

These data also reveal that the sensitivity of analyte retention towards changes in Eapp 

at 100.0 °C is slightly greater than that at 25.0 °C. In other words, the slopes of the 

sensitivity plots for the analytes tested in the experiments at both 25.0 and 100.0 °C are 

~20% steeper at 100.0 °C (Table 1, columns A and B). This disparity is attributed to the 

inherent difference in the interactions between the packing and analyte at the two 

temperatures. As evident from the insets in Figures 2 and 4, retention is lower at 100.0 °C, 

which arises because of an increase in analyte solubility and a decrease in retention at higher 

temperatures due to the exothermicity of the interaction. A change in Eapp should therefore 

have greater impact on retention at 100.0 °C, which is reflected by the differences in Table 1. 

The upper inset in Figure 4 also enables identification of conditions that may yield a 

more effective separation than those obtained. That is, the differences in analyte retention 

predicted by the plots of In k' vs. Eapp suggest that the mixture of ASFs can be fully resolved 

at an Eapp of —460 mV. Though not tested, an analysis of these data also indicates a possible 

runtime of ~1 min and an elution order of BS<1,5-NDS<MBS<CBS<2,6-NDS at —460 mV. 

More importantly, the results in this section show that the chromatographic performance of 

EMLC can be enhanced by the combination of elevated column temperature and Eapp. 

Aqueous Mobile Phase. The next set of chromatographic experiments examined the 

ability to carry out EMLC separations at PGC in a purely aqueous mobile phase, i.e., mobile 
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phase B. The intent was to determine if the increase in the hydrophobicity of water that 

results from an elevation in temperature would raise ASF solubility to a level sufficient to 

perform an EMLC-based separation in an entirely aqueous mobile phase. We add that the 

use of a purely aqueous mobile phase is particularly challenging to the separation of aromatic 

compounds on carbonaceous packings, such as PGC, because the strong interactions between 

extended ^electron systems often lead to exceedingly long elution times and strong band 

tailing.34 Attempts in our laboratory to separate ASFs using PGC with mobile phase B and a 

column temperature of 25.0 °C yielded intolerably long retention times. MBS, for example, 

required nearly 60 min to elute at +100 mV. Decreasing Eapp to -500 mV reduced the elution 

time to -40 min, but was still deemed unacceptably long. 

Figure 5 shows the separation of BS, MBS, CBS, and 1,5-NDS in mobile phase B 

with the column held at 100.0 °C and a flow rate of 2.0 mL/min. Five different values of 

Eapp were used: +40, -160, -360, -560, and -760 mV. As is evident from comparisons to the 

separations with mobile phase A shown in Figure 4, elimination of acetonitrile sharply 

increases the runtime. At +40 mV, the separation in mobile phase B (chromatogram A) 

required a runtime of-11 min. The analogous experiment with mobile phase A 

(chromatogram A, Figure 4) yielded a total elution time of -2.5 min. Interestingly, by 

moving Eapp to more negative values, the runtime can be markedly reduced while 

maintaining an effective separation. Both BS and MBS are baseline resolved at -760 mV, 

whereas the resolution between 1,5-NDS and CBS equals 1.4; importantly the runtime is 

only-1.9 min. 

The sensitivity plots presented in the inset of Figure 5 again show that the ability of 

EMLC to fine tune separations of these analytes arises from changes in the electrostatic 
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Figure 5. Dependence of retention of BS, MBS, CBS, and 1,5-NDS on Eapp at a flow rate of 
2.0 mL/min with a mobile phase composed of 0.1 M lithium perchlorate in water and a 
temperature of 100.0 °C. (A) +40 mV; (B) -160 mV; (C) -360 mV; (D) -560 mV; and (E) -
760 mV. Inset: Plot In k' vs. Eapp BS (•), MBS (•), CBS (A), and 1,5-NDS (O). 
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interactions induced by Eapp. In other words, the linear dependencies for the plots of In k' vs. 

Eapp, coupled with greater sensitivity of the dianion 1,5-NDS with respect to the monoanions, 

BS, MBS, and CBS (Table 1, column C) are consistent with an electrostatic interaction 

model. 

We also note that the sensitivities at 100.0 °C in the mobile phase B are lower than 

those in mobile phase A at 100.0 °C, a disparity that can be explained in a manner similar to 

that used to interpret the differences in the slopes when using mobile phase A at the two 

temperatures. That is, since retention is inherently greater in mobile phase B, which is a 

water-only supporting electrolyte (0.1 M UCIO4), the sensitivity to Eapp will be less than that 

in mobile phase A, which contains 5% acetonitrile. 

Equilibration Time. Experiments were also performed to determine if the decrease 

in solution resistivity and/or increase in solution diffusivity that occurs with increasing 

temperature25 would reduce the time required for the column to equilibrate to a change in 

Eapp. These tests were conducted using mobile phase A at either 20.0 or 60.0 °C. First, BS 

was injected at a preset value of Eapp in order to determine its retention time. After elution, 

BS was again injected, with Eapp immediately stepped to and held at a different value. 

Injections were repeated continuously until no further changes in retention were observed. 

The first test employed a step from -50 to +50 mV. At 20.0 °C, retention of BS reached a 

constant value in 44 min. The time for stabilization at 60.0 °C, however, was only 22 min. 

Increases in the magnitude of the step yielded longer equilibration times. For example, a step 

from -100 to +100 mV at 20.0 °C required 62 min before reaching a limiting value (2% RSD 

for at least three consecutive injections) for the retention of BS, but only 33 min at 60.0 °C. 
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These results demonstrate a clear reduction of the time required to equilibrate the column 

when operated at elevated temperatures, and tests to more fully assess the scope of this 

capability are planned. 

Retention Stability at Elevated Temperatures. We also briefly examined the 

effects of temperature on the stability of the PGC packing. At room temperature, our EMLC 

columns exhibit a day-to-day reproducibility of -2% RSD for k'. Typically, the columns are 

stored with a continuous passage of water at 0.1 mL/min between uses. Occasionally, a wash 

with acetonitrile or methanol for a few hours is needed to recondition the column, 

presumably to remove the buildup of material that slowly accumulates on the packing 

surface. 

Although not yet systematically studied, operation at elevated temperatures led to a 

slow decrease in retention time. One set of data showed that three days of continuous 

experimentation, which spanned both mobile phases, a range of temperatures, and various 

values of Eapp, led to a decrease in capacity factors by 4-10%. We suspect that this decrease 

arises, at least in part, from an increase in the concentration of oxygen groups on the packing 

surface.35 Characterization of the packing, after use in temperature experiments for several 

days, by X-ray photoelectron spectroscopy indicated that the concentration of surface oxygen 

groups had reached a level as high as 0.9% (atomic) as a consequence of extended use. It is 

therefore evident that the stability of the packing at elevated temperatures needs to be 

improved in order to fully exploit the advantages of operation at elevated temperatures. 

Along these lines, recent reports have shown that hydrogenating glassy carbon electrodes 

stabilizes their electrochemical response in comparison to polished electrodes.36,37 We 
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believe that such processing may also prove valuable in enhancing the long term 

performance of the PGC packing when operated at elevated temperature. 

Conclusions ^ 

This work has demonstrated the power of combining changes in applied potential via 

EMLC with elevated operational temperatures in markedly enhancing the separation of 

ASFs. With this integration, the analysis time of such a mixture at a PGC stationary phase 

was reduced by more than a factor of 20, yielding an effective separation in less than 1 min. 

The use of higher operation temperatures (i.e., 100° C) also enabled: 1) the effective 

separation of this mixture with a water-only mobile phase in under 2 min, and 2) a two-fold 

decrease in the time for the column to equilibrate to a change in applied potential. Together, 

these finding have clear implications with respect to improvements for EMLC in sample 

throughput as well as to reductions in mobile phase toxicity, flammability, and waste 

disposal costs. We are also exploring ways to enhance the extended performance of this 

packing through the use of hydrogen plasma treatments. 
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CHROMATOGRAPHIC SEPARATION OF POLYCYCLIC 

AROMATIC HYDROCARBONS 
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Abstract 

The retention behavior of several small polycyclic aromatic hydrocarbons (PAHs) on 

porous graphitic carbon (PGC) has been examined by electrochemically modulated liquid 

chromatography (EMLC) through changes in the composition and concentration of the 

supporting electrolyte and applied potential (Eapp). Both solvophobic and donor-acceptor 

interactions were found to effect retention. The solvophobic component of the retention 

mechanism was revealed through changes in supporting electrolyte identity and 

concentration, while the role of donor-acceptor interactions were reflected by the sensitivity 

of elution to changes in Eapp. Of particular interest are the retention shifts with changes in the 

concentration of tetrabutylammonium perchlorate, which alters both the ionic strength and 

polarity of the mobile phase. Improvements in the speed of the analysis through operation at 

an elevated column temperature and flow rate, allowed a more detailed investigation into the 

details of donor-acceptor retention interactions through comparisons of the elution order and 

sensitivity of retention to changes in Eapp. 
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2 Institute of Combinatorial Discovery, Chemistry Department, Iowa State University, and 
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introduction 

Polycyclic aromatic hydrocarbons (PAHs) have adverse health effects and their 

extraction and detection continues to be of major importance.1 Post extraction, the most 

common methods of PAH analysis are gas chromatography2,3 and high performance liquid 

chromatography (HPLC).2,4 While gas chromatography is often the method of choice, only 

PAHs with less than 24 carbons have sufficient volatility for analysis. HPLC has been used 

to overcome this limitation. 

PAHs are commonly separated in HPLC with reversed-phase packings (e.g., 

CIS-modified silica).4 These separations are generally accomplished by using a mobile 

phase that contains a high percentage of an organic component to decrease its polarity.4 

Porous graphitic carbon (PGC) has also proven to be a versatile and stable stationary phase 

for the use in HPLC and has strong reversed-phase retention characteristics.5 Separations of 

PAHs with PGC, however, have had limited success.6,7 The highly aromatic nature of both 

the analytes and stationary phase yield extremely long retention times and severe band 

broadening. Even employing extremely strong eluents (e.g., methylene chloride) has done 

little to improve the situation.6 However, this strong attraction makes PAHs an interesting 

class of probe molecules to explore the mechanism of retention on carbon in more detail. 

Electrochemically modulated liquid chromatography (EMLC) is a technique that 

takes advantage of some of the unique characteristics of PGC.8 In EMLC, conductive 

stationary phases like PGC also act as a high surface area working electrode. The unique 

ability to manipulate the donor-acceptor properties of the conductive packing through 

changes in applied potential (Eapp) therefore provides an alternative means to control analyte 

retention. Several reports from our laboratory9"13 and others14"17 have demonstrated that a 
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wide range of mixtures can be effectively separated with EMLC. Earlier reports examined 

the separation of aromatic sulfonates,13 monosubstituted benzenes,10 protonated pyridines 

and anilines,18 corticosteroids,9 and benzodiazepines.12 Improvements in the column design, 

aimed at reducing the time required for equilibration of the packing after changes in Eapp, 

were also described.11 More recently, we have incorporated temperature as an additional 

control parameter in EMLC separations, aimed at delineating the thermodynamic 

contributions to retention19 and at improving analysis times through operation at elevated 

flow rates.20 

The work presented herein applies EMLC to the separation of several small PAHs. 

Some interesting chromatographic behavior was observed both as a function of Eapp and 

supporting electrolyte concentration, which sheds some light into the retention mechanism of 

highly aromatic nonpolar compounds at carbon. It is also demonstrated that elevating 

column temperature and flow rate can improve the speed of the separation. 

Experimental Methods 

Chemicals and Reagents. The analytes: naphthalene, acenaphthene, 

acenaphthylene, and fluorene, shown in Chart 1, were purchased from Aldrich Chemical 

(Milwaukee, WI). All were used at a concentration of 10-20 ng/mL after dissolution in 

HPLC grade acetonitrile (Fisher Scientific, Pittsburgh, PA). The mobile phase consisted of 

various concentrations of lithium perchlorate and tetrabutylammonium perchlorate (Aldrich), 

in acetonitrile. The mobile phases were passed through a 0.5-gm filter (GE Osmonics Inc., 

Minnetonka, MN) prior to use. The 7-p.m PGC (Hypercarb) particles were obtained from 

Thermo Hypersil (Bellfonte, PA). 
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(1) Naphthalene 

(2) Acenaphthene 

(3) Acenaphthylene 

(4) Fluorene 

Chart 1. Polycyclic aromatic hydrocarbons 
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Instrumentation. The design and construction of the EMLC column has been 

described in detail elsewhere.11 An Ag/Ag+ reference electrode was used for potential 

control of the stationary phase and all values of Eapp are reported with respect to this 

electrode. The column was attached to an Agilent Technologies model 1050 HPLC equipped 

with an autosampler, quaternary pump, and a UV-Vis diode array detector. The samples 

were injected using a 5.0-pL injection volume. The elution profiles were monitored at 

240 nm. The potential applied to the stationary phase was controlled by an Amel potentiostat 

to ±1 mV. 

The experimental setup for the control of temperature has also been detailed 

recently20 and parallels several of the design elements devised by Carr and co-workers.14,16 

The temperature was controlled to ±0.2 °C in a thermostated water bath (Polyscience, Niles, 

IL) filled with 50:50 (v/v) ethylene glycol:water. A 20-cm length of stainless steel tubing 

was placed in the water bath in order to temperature-equilibrate the mobile phase and sample 

before entering the column. An additional 20 bar of back pressure was applied in-line after 

the detector through a restrictor to avoid boiling the mobile phase while in the column. A 

maximum temperature of 75 °C was used to limit the evaporative loss of the electrolyte 

solution in the reservoir that houses the reference electrode. 

Data Treatment. An acetonitrile blank was employed to determine the void time for 

calculations of the capacity factor, k'. Retention times were determined from the first 

statistical moment of the elution profile in order to compensate for band asymmetry.21 Three 

or more replicate injections were used for the calculation of k'. The resolution (Rs) of a 

separation was calculated based on statistical moment analysis resident in the HP 

Chemstation software, where the first moment represents the peak centroid and the second 
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moment is the peak variance.21 By way of a working definition, an Rs value of 1.5 or greater 

for a separation of neighboring components is termed "baseline resolution", whereas 

"effective resolution" is used to describe values of Rs in the range of 1.0 to 1.5.22 

Results and Discussion 

Separations with a Lithium Perchlorate Mobile Phase. Figure 1 demonstrates the 

ability of EMLC to manipulate the retention of naphthalene and acenaphthene at PGC 

through changes in Eapp. These results were obtained at four different values of Eapp (+200, 

-100, -400, and -700 mV) using 100 mM lithium perchlorate as the mobile phase at a 1.0 

mL/min flow rate. The column temperature was 24 °C. Both analytes exhibit a decrease in 

retention as Eapp is moved to more negative values. For example, acenaphthene decreases 

from a retention time of 12.4 min at +200 mV (Chromatogram A) to 6.0 min at -700 mV 

(Chromatogram D). This behavior is similar to that observed for neutral monosubstituted 

benzene compounds in EMLC separations,10'11 and is attributed to changes in the donor-

acceptor interactions between the ^-systems of the analyte and the PGC surface. In other 

words, PGC becomes a stronger acceptor with increases in Eapp, which, in turn increases the 

interactions with the ^-systems of these analytes. 

The results in Figure 1, along with those not shown for 10 and 50 mM concentrations 

of lithium perchlorate, were further analyzed by the plots of In k' vs. Eapp shown in the inset. 

The error bars for the values of In k' are smaller than the data points, and represent one 

standard deviation calculated from three or more replicate injections. The first key 

observation in the inset is that the retention of each analyte exhibits a linear dependence on 

Eapp. This behavior illustrates the effect on donor-acceptor interactions between the 
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-800 

(mVvs. Ag/Ag*) 

Time (min) 

Figure 1. Dependence of the retention of naphthalene (1) and acenaphthene (2) on Eapp at a 
flow rate of 1.0 mL/min, and a mobile phase composed of 100 mM ÙCIO4 in acetonitrile, 
and a temperature of 24 °C. (A) +200 mV; (B) -100 mV; (C) -400 mV; and (D) -700 mV. 
Inset: Plot In A' vs. Eapp for naphthalene (solid symbols) and acenaphthene (open symbols) 
with 100 mM (•, O), 50 mM (•, D), and 10 mM (A, A) LiClÛ4. Error bars are smaller 
than the size of the data points. 
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7T-systems in the analyte and those in PGC. Linearity of these types of plots has also been 

observed for a series of neutral monosubstituted benzenes.10,11 

The slopes of these plots can be viewed as the sensitivity of retention (S) to changes 

in Eapp, which are summarized in Table 1. With that in mind, there are several further 

observations. First, the slopes for acenaphthene are smaller than those for naphthalene, 

indicating that Eapp has a larger impact on the retention of naphthalene. Interestingly, 

acenaphthene has a lower sensitivity than naphthalene, despite being more retained. As 

extensively reported in the PGC literature,23 retention of aromatic compounds is dictated first 

by the degree of unsaturation and second by an increase in the number of carbon atoms. As 

evident in Chart 1, naphthalene and acenaphthene have the same number of ̂ -electrons (i.e., 

degree of unsaturation), but have different numbers of carbon atoms. Naphthalene, with 10 

carbons, is planar. The nonplanar acenaphthene has two additional sp3 hybridized carbons. 

The presence of two more carbons apparently leads to the longer retention of acenaphthene 

over naphthalene. We suspect that the planarity of naphthalene allows a more intimate 

interaction between the two ^-systems, resulting in a greater sensitivity to changes in the 

donor-acceptor strength of PGC. 

Examining the changes in retention as the in supporting electrolyte concentration 

varies also shows some interesting behavior. The retention of each analyte decreases as the 

concentration of LiCld, decreases (100, 50, and 10 mM), as shown in Figure 2. Increasing 

the ion concentration in the mobile phase will decrease the solubility (i.e., increase in 

solvophobicity) of the PAHs, due to their neutral nonpolar characteristics. In addition, the 

PAHs are strongly attracted to the carbon stationary phase due to their aromatic nature. 

Therefore, at a higher ionic strength mobile phase, the relative difference of characteristics 



www.manaraa.com

103 

Table 1. Slopes from the plots of In k' vs. Eapp (10"3 mV"1). 

Cone (1) (2) 
Mobile Phase (mM) Naphthalene Acenaphthene 

100 1.18 0.87 

LiC104 50 1.14 0.88 

10 0.80 0.61 

100 1.35 1.07 

TBACIO4 50 1.35 1.05 

10 1.10 0.90 
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Figure 2. Dependence of the retention of naphthalene (1) and acenaphthene (2) on LiClÛ4 
concentration at a flow rate of 1.0 mL/min, and a temperature of 24 °C. (A) 100 mM; (B) 50 
mM; and (C) 10 mM. 



www.manaraa.com

105 

between the mobile and stationary phase is the largest. Coupling these factors would result 

in stronger retention in a higher ionic strength mobile phase (i.e., 100 mM). Nevertheless, 

this effect is relatively small. For example, acenaphthene decreases in retention from 12.4 to 

9.3 min as the supporting electrolyte is decreased from 100 to 10 mM (Figure 

Chromatograms A and C). 

Another interesting trend is evident in comparing the values of S for each analyte with 

changes in concentration of LiClC>4 (Table 1). The value of S decreases with decreasing 

supporting electrolyte concentration, suggesting that retention is manipulated more readily 

with a higher ionic strength mobile phase. Mechanistic implications of this observation are 

discussed with the trends found in the data described in the following section. 

Separations with a Tetrabutylammonium Perchlorate Mobile Phase. A similar 

set of experiments were performed using tetrabutylammonium perchlorate (100 mM) as the 

supporting electrolyte. In comparing the chromatograms for naphthalene and acenaphthene 

in Figure 1 with that in Figure 3, it is evident that TBACIO4 is a stronger eluting agent. The 

runtime for the separation with LiC104 takes nearly 14 min, while that with TBACIO4 is just 

under 9 min. Moreover, the retention behavior of naphthalene and acenaphthene with 

changes in Eapp in TBACIO4 mimics that in LiC104. The linear dependence of the plots of 

In k' vs. Eapp, shown in the Figure 3 inset, again indicates the importance of donor-acceptor 

interactions to retention. 

In further comparing S of the two supporting electrolytes, it is observed that the 

values of S with TBACIO4 are greater than those with LiClC>4. This is an interesting 

comparison because the observed shift in retention is a convolution of the sensitivity of the 

interaction of the analyte and supporting electrolyte with PGC to changes in Eapp. 
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Figure 3. Dependence of the retention of naphthalene (1) and acenaphthene (2) on Eapp at a 
flow rate of 1.0 mL/min, and a mobile phase composed of 100 mM TBACIO4 in acetonitrile, 
and a temperature of 24 °C. (A) +200 mV; (B) -100 mV; (C) -400 mV; and (D) -700 mV. 
Inset: Plot In k' vs. Eapp for naphthalene (solid symbols) and acenaphthene (open symbols) 
with 100 mM (•, O), 50 mM (•, •), and 10 mM (A, A) TBACIO4. Error bars are smaller 
than the size of the data points. 
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Comparing the measured S-values for the same analyte in mobile phases with two different 

supporting electrolytes allows conclusions to be made about the effect of Eapp on the 

interactions of the supporting electrolyte with PGC. The data suggest that TBACIO4 is itself 

more sensitive to Eapp than LiC104, implying that TBACIO4 is a stronger competitor for the 

surface. This conclusion is supported by the lower retention times observed for naphthalene 

and acenaphthene with the TBACIO4 mobile phase. 

In comparing the sensitivities of the analytes for a given condition, the value of S for 

acenaphthene are smaller than those for naphthalene. As stated above, this trend is likely due 

to the higher planarity of naphthalene over acenaphthene, which results in a closer interaction 

between the ^-electrons of naphthalene and the surface and thus a greater sensitivity to 

changes in Eapp. 

In examining retention as a function of electrolyte concentration for TBACIO4 

(Figure 4), a surprising trend was observed. As the concentration of supporting electrolyte 

was decreased, the retention increased slightly. For example, the retention time of 

acenaphthene is seen to increase from 7.9 to 8.8 min as the TBACIO4 concentration 

decreases from 100 to 10 mM. This dependence is opposite of that observed for retention 

with the LiClÛ4 mobile phase. There are, however, a different set of factors to consider with 

TBACIO4. Tetrabutylammonium itself is a fairly large organic cation with nonpolar 

characteristics. Therefore, increasing the supporting electrolyte concentration not only 

increases the ionic strength of the mobile phase, but decreases the polarity of the mobile 

phase as well. The first factor would tend to increase retention, whereas the second factor 

would have the opposite effect. Since retention decreases with increasing concentration, the 
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Figure 4. Dependence of the retention of naphthalene (1) and acenaphthene (2) on 
TBACIO4 concentration at a flow rate of 1.0 mL/min, and a temperature of 24 °C. (A) 100 
mM; (B) 50 mM; and (C) 10 mM. 
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lower polarity of the mobile phase appears to have a slightly greater effect than the increased 

ionic strength. 

The sensitivities of the analytes to Eapp are larger for the higher concentrations of 

TBACIO4, as was observed for L1CIO4 (Table 1). This differences suggests that the decrease 

in mobile phase polarity due to the presence of the tetrabutylammonium cation counters the 

increase in ionic strength to result in an increase in retention. In other words, solvophobicity 

dictates the change in retention time, while donor-acceptor retention interactions determines 

the sensitivity of the separation to changes in Eapp. 

High Speed Separation of PAHs. As demonstrated in a recent report from our 

laboratory,20 elevating the column temperature can dramatically improve the speed of an 

EMLC analysis without significant loss in chromatographic efficiency. This section 

describes the application of this methodology to the separation of a mixture of naphthalene, 

acenaphthene, acenaphthylene, and fluorene. Using a 10 mM LiClC>4 mobile phase and 

elevating the column temperature to 75 °C enabled the flow rate to be increased to 

3.0 mL/min without exceeding the maximum pump pressure (400 bar). 

Figure 5 shows the separation of the PAHs under these conditions at four different 

values of Eapp: +200, -100, -400, and -700 mV. At +200 mV, the analytes elute in less than 

4 min with baseline resolution. Like the room temperature separations, all four PAHs show a 

decrease in retention as Eapp becomes more negative. The separations at -100 and -400 mV 

exhibit a decrease in retention while maintaining baseline resolution (Rs >1.5). At -700 mV, 

the runtime has decreased to -2.5 min, with near baseline resolution (Rs = 1.3) for 

acenaphthene and acenaphthylene. While these operational conditions effectively resolved 

this mixture, PAHs with three or more aromatic rings were still so strongly retained that 
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Figure 5. Dependence of the retention of naphthalene (1) and acenaphthene (2) on Eapp at a 
flow rate of 3.0 mL/min, and a mobile phase composed of 10 mM LiClÛ4 in acetonitrile, and 
a temperature of 75 °C. (A) +200 mV; (B) -100 mV; (C) -400 mV; and (D) -700 mV. Inset: 
Plot In k' vs. Eapp for naphthalene (•), acenaphthene (•), acenaphthylene (A), and fluorene 
(•). Error bars are smaller than the size of the data points. 
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severe band broadening was observed. Though not shown, the elution of anthracene required 

12.4 min at -700 mV, but had a 6.2 min-wide baseline. Clearly, further studies need to 

explore ways to improve the elution of larger PAHs, with the use of stronger eluting mobile 

phases (e.g., methylene chloride or tetrahydrofuran) and/or a column redesigned to operate at 

elevated temperature representing intriguing possibilities. 

The elution order observed for these high speed separations follows the trend 

established in previous studies on smaller aromatic hydrocarbons.23 Elution order is first 

determined by the number of double bonds that define the ^-systems of the analytes, and 

second by the number of carbon atoms on the molecule. The PAHs with more double bonds 

have longer elution times. For PAHs with the same number of double bonds, the compound 

with the fewer number of carbon atoms elutes first. Naphthalene and acenaphthene both 

have five double bonds, and therefore elute first. Acenaphthene has two additional sp3 

hybridized carbon atoms giving it a total of 12 carbon atoms in the molecule, resulting in 

longer retention than naphthalene, which has only 10 carbon atoms. Acenaphthene is 

followed by acenaphthylene (six double bonds, 12 carbon atoms), fluorene (six double 

bonds, 13 carbon atoms), and anthracene (seven double bonds, 14 carbon atoms). 

The sensitivity plots presented in the inset of Figure 5 again show the ability of 

EMLC to fine tune separations of these PAHs by manipulating donor-acceptor interactions 

via changes in Eapp. The decreasing resolution between acenaphthene and acenaphthylene as 

Eapp becomes more negative is evident by the convergence of these plots. 

The S-values are quantified in Table 2. There are two interesting observations in the 

values for S. First, the order of decreasing S is acenaphthylene, naphthalene, fluorene, and 

acenaphthene. While the order of S of does not follow the elution order, there is an 
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Table 2. Slopes from the plots of In k' vs. 
Eapp (10-3 mV"1) under high speed 
conditions. 

PAH Slope 
1 Naphthalene 0.60 
2 Acenaphthene 0.42 
3 Acenaphthylene 0.67 
4 Fluorene 0.58 
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interesting trend. The first level of discrimination for S, as was observed above, is the 

planarity of the compound followed by the number of double bonds. Acenaphthylene and 

naphthalene are both planar with acenaphthylene having more double bonds than 

naphthalene. It therefore follows that acenaphthylene would be more sensitive to changes in 

Eapp than naphthalene. Though not tested, this trend suggests that anthracene would be even 

more sensitive to changes in Eapp. Unfortunately, the severe band broadening in the retention 

of anthracene prohibited testing this hypothesis. 

The second interesting observation is that the S-values for naphthalene and 

acenaphthene are lower at elevated temperature and flow rates than at room temperature. 

While the observed decrease in retention is primarily governed by the exothermicity of the 

interaction and the increased flow rate, the sensitivity is governed by the change in the 

solvophobicity of the interaction. As temperature increases, the dielectric constant of 

acetonitrile decreases,24 making the mobile phase more nonpolar. Therefore, at elevated 

temperature the solubility of the PAHs in the mobile phase has increased, decreasing the 

solvophobicity of the interaction. These weaker solvophobic interactions allow the retention 

of the PAHs to be less affected by changes in the stationary phase, resulting in the decreased 

manipulation of the donor-acceptor interactions via changes in Eapp. 

Conclusion 

The unique retention behavior of PAHs on PGC to changes in mobile phase 

composition and Eapp has been described. The sensitivity of retention to Eapp highlights the 

donor-acceptor component of the retention mechanism, while changes in supporting 

electrolyte concentration demonstrate the solvophobic component of the retention 
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mechanism. Of particular interest is the change of retention with changes in the 

concentration of TBACIO4, where retention shifts are dictated by both ionic strength and 

polarity issues. It has also been demonstrated that elevating column temperature and flow 

rate improves the separation time of the PAHs examined here. The improvement in the 

speed of the analysis allowed a more detailed investigation into the details of the donor-

acceptor retention parameter through comparisons of the retention of four PAHs. Further 

studies into the thermodynamics of retention of these and other PAHs on PGC will aid in the 

elucidation of the different aspects of the retention mechanism in more detail. 

Acknowledgment 

This work was supported by the US Department of Energy through the Office of 

Basic Energy Sciences. The Ames Laboratory is operated by Iowa State University under 

contract W-7405-eng-82. 

References 

(1) Eljarrat, E.; Barcelo, D. TrAC, Trends in Analytical Chemistry 2003, 22, 655-665. 

(2) Furton, K. G.; Jolly, E.; Pentzkê, G. J. Chromatogr. 1993, 642, 33-45. 

(3) Santos, F. J.; Galceran, M. T. Trends in Anal. Chem. 2002,21,672-685. 

(4) Wise, S. A.; Sander, L. C.; May, W. E. J. Chromatogr. 1993, 642, 329-349. 

(5) Knox, J. H.; Ross, P. In Adv. ChromatogrBrown, P. R., Grushka, E., Eds.; Marcel 

Dekker, Inc.: New York, 1997; Vol. 37, pp 73-119. 



www.manaraa.com

115 

(6) Deng, L. Dissertation, ISU, 1998. 

(7) Unger, K. K. Anal. Chem. 1983,55, 361A-375A. 

(8) Harnisch, J. A.; Porter, M. D. Analyst 2001,126,1841-1849. 

(9) Ting, E.-Y.; Porter, M. D. Anal. Chem. 1997, 69,675-678. 

(10) Ting, E.-Y.; Porter, M. D. J. Electroanal. Chem. 1997, 443,180-185. 

(11) Ting, E.-Y.; Porter, M. D. Anal. Chem. 1998, 70,94-99. 

(12) Ting, E.-Y.; Porter, M. D. J. Chromatogr. A 1998, 793,204-208. 

(13) Deinhammer, R. S.; Ting, E.-Y.; Porter, M. D. Anal. Chem. 1995, 67,237-246. 

(14) Ge, H.; Wallace, G. G. J. Liq. Chromatogr. 1990,13, 3245-3260. 

(15) Ge, H.; Teasdale, P. R.; Wallace, G. G. J. Chromatogr. 1991,544, 305-316. 

(16) Nagaoka, T.; Fugimoto, M.; Nakao, H.; Kakuno, K.; Yano, J.; Ogura, K. J. 

Electroanal. Chem. 1994,364, 179-188. 

(17) Mitakos, A.; Panderi, I. Anal. Chim. Acta 2004, JO J, 107-114. 

(18) Takano, H.; Porter, M. D. In New Directions in Electroanalytical Chemistry II; 

Leddy, J., Vanysek, P., Porter, M. D., Eds.; The Electrochemical Society, Inc.: 

Seattle, WA, 1999; Vol. 99-5, pp 50-60. 

(19) Ponton, L. M.; Porter, M. D. In preparation. 

(20) Ponton, L. M.; Porter, M. D. Anal. Chem., accepted. 

(21) Foley, J. P.; Dorsey, J. G. Anal. Chem. 1983,55, 730-737. 

(22) Poole, C. F. The essence of chromatography, Elsevier: Boston, 2003. 

(23) Kriz, J.; Adamcova, E.; Knox, J. H.; Hora, J. J Chromatogr. A 1994, 663, 151-161. 

(24) Hill, W. W.; Rosenzweig, S.; Franck, E. U. Berichte der Bunsen-Gesellschaft 1990, 

94, 564-568. 



www.manaraa.com

116 

CHAPTER 6. GENERAL CONCLUSIONS 

Research Overview 

The primary focus of this doctoral research has been the integration of temperature 

control into electrochemically modulated liquid chromatography (EMLC). The addition of 

temperature as a controllable variable to the tunable characteristics of carbonaceous EMLC 

stationary phases (i.e., porous graphitic (PGC) and glassy (GC) carbon) has allowed insights 

into the subtleties of the retention mechanism. Furthermore, operating EMLC at elevated 

temperature can markedly reduce analysis times. 

Chapter 2 describes the determination of thermodynamic contributions to retention, 

enabling comparison of retention mechanisms under a variety of conditions. The elution 

behavior of two naphthalene disulfonates as a function of applied potential (Eapp) was 

examined by calculating the enthalpic and entropie contributions to retention. As expected 

for anions, the retention time decreases as Eapp becomes more negative. Interestingly, while 

the retention mechanism is exothermic at all potentials, the exothermicity of the interaction 

increases as analyte retention decreases. Calculations of the entropie contribution to 

retention and overall Gibbs free energy show that the retention dependence of these analytes 

on Eapp is entropically rather than enthalpically controlled. Since entropically driven 

separations are commonly found in ion exchange chromatography (IEC), this suggests a level 

of similarity in the retention mechanism between EMLC- and IEC-based separations. 

However, most IEC entropically driven separations are accompanied by a positive change in 

enthalpy rather than the observed negative change in enthalpy found here. Retention on PGC 

has a strongly reversed-phase liquid chromatography (RPLC) mechanism,1 where negative 
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changes in enthalpies are commonly found. The retention of aromatic ions in EMLC is 

therefore a combination of both RPLC and IEC mechanisms. 

Further support for an ion-exchange mechanism at carbon packings is presented in 

Chapter 3, in which the manipulation and optimization of inorganic anion retention on PGC 

through changes in both the mobile phase composition and the Eapp of the stationary phase is 

described. The choice of an electronic competitor and its concentration, [£], in the mobile 

phase have a profound impact on the resolution of the separation, with fluoride proving the 

most effective eluent of the three (tetrafluoroborate, sulfate, and fluoride) electronic 

competitors tested. Results also showed that these separations could be manipulated by 

changes in Eapp. From a mechanistic perspective, plots of In k' (capacity factor) were found 

to be linearly dependent on both Eapp and In [£]. This behavior can be described in the 

context of an ion-exchange mechanism between analyte ions in the mobile phase and eluent 

ions in the interphase formed on the surface of PGC. Deviations from the expectations for 

the slopes of the In k' vs. In [E] plots were attributed to the effects of specific interactions on 

the retention mechanism, which are not readily accounted for by correct theories of solvation 

thermodynamics. 

Temperature-controlled EMLC has also been useful in the optimization of analysis 

time by taking advantage of the drop in mobile phase viscosity at higher temperatures, which 

allows the use of faster flow rates. Chapter 4 discussed the application of elevated 

temperatures and flow rates in EMLC-based separations resulting in a reduction in analysis 

time by a factor of more than 20, yielding an effective separation in less than 1 min for 

several aromatic sulfonates. Enhancement in the speed of the separation also allowed the 

elimination of the organic component of the mobile phase, resulting in the separation of the 
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aromatic sulfonates in less than 2 min in an entirely aqueous mobile phase. Together, these 

findings have clear implications for the improvement of EMLC by increasing sample 

throughput as well as reducing mobile phase toxicity, flammability, and waste disposal costs. 

Chapter 5 describes the retention of polycyclic aromatic hydrocarbons (PAHs) on 

PGC with changes in Eapp for both lithium perchlorate and tetrabutylammonium perchlorate 

mobile phases. Retention of PAHs is dominated by both donor-acceptor properties, as 

highlighted by the effect of Eapp on retention, and solvophobic properties, evident in 

examining the changes in supporting electrolyte identity and concentration. Elevated 

temperature and flow rate, similar in design to the experiment described in Chapter 4, were 

also employed for the improvement in the speed of the analysis. Moreover, these results 

provide further insight into the details of the donor-acceptor based retention through 

comparisons of the retention of four PAHs. 

Prospectus 

The successful integration of temperature into EMLC separations will allow further 

studies on a wide variety of analytes to probe different aspects of retention. For example, 

small inorganic anion analysis will yield insight into the details of the ion-exchange 

mechanism. Expanding these ions to incorporate nonpolar and polar functionalities, as well 

as aromaticity, will further test the impact of the hydrophobic effect via thermodynamic 

analysis. In addition, the examination of neutral compounds, such as polycyclic aromatic 

hydrocarbons and other smaller aromatic compounds will provide insight into the reversed-

phase aspect of retention. Together, these studies will yield a more detailed mechanism of 

EMLC-based retention. 
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In addition to new analyte probes, an extension of the thermodynamic analysis 

described in the General Introduction and Chapter 2 is the use of extra-thermodynamic 

values to determine the similarity of retention mechanism within and throughout several 

classes of analytes. One of the more common thermodynamic approaches used in 

chromatography is enthalpy-entropy compensation (EEC).2,3 To avoid statistical artifacts in 

data processing, EEC is given by: 

ln^  =  ̂  
7 R 

1 1 
T pj S+,n* [1] 

where f3is the compensation temperature, AG°p is the Gibbs free energy at /?, and k'j is the 

capacity factor at temperature T.4'6 This approach has been used to examine mechanisms for 

a wide range of analytes, mobile phases, and stationary phases.3,7-9 When the retention 

mechanism is the same, the compensation temperatures are comparable. Therefore, 

comparisons of EEC behavior have proven valuable in identifying key differences, for 

example, between reversed and normal phase separations.3 Using this means of analysis with 

EMLC will aid in the differentiation of the different retention mechanisms involved. 

A key hurdle to overcome in thermodynamic analyses is accurate determination of the 

phase volume ratio (<|>). The ̂ -intercept of a van't Hoff plot can only be used in the 

determination of AS0 if the value of <|> is known. However, the development of an exact 

definition and determination of <|> is a long standing issue in chromatographic systems. The 

value of Vmp can be determined in several ways.10 For EMLC, using the retention time of a 

pseudo peak (i.e., a mismatched matrix between the sample and mobile phase) is the most 

effective method. The functional definition and determination of Vsp is more problematic, as 

it is in many chromatographic systems.11 
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For many solid stationary phases (those without a bonded phase), it is common to 

treat retention as a surface adsorption phenomenon.12 However, this is not necessarily a valid 

assumption, because it ignores the effect of the electrical double layer. The compositional 

details of the double layer may have a significant impact on the retention of analytes. 

Therefore, we believe that this layer needs to be considered as part of the stationary phase 

and impacts the value for Vsp. The solution side of the electrical double layer consists of two 

components: the compact layer and the diffuse layer. The thickness of the compact layer is 

defined by the diameter of ions specifically adsorbed on the surface of the stationary phase, 

and therefore is independent of the charge density of the stationary phase. On the other hand, 

the thickness of the diffuse layer is dependent on both the charge density of the stationary 

phase and the mobile phase composition. As a result, the diffuse layer thickness will vary 

when different conditions are employed. The double layer structure is even more complex in 

flowing systems because a stagnant solution layer is formed at the surface, the thickness of 

which depends on particle size and flow rates. The stagnant layer potentially decreases the 

effective thickness of the diffuse layer. Since the data in Chapter 2 was interpreted to 

indicate a constant stationary phase thickness over a wide range of Eapp, Vsp can be defined by 

the surface area of the packing and the thickness of the compact component of the electrical 

double layer. In light of this discussion, more detailed investigations into the determination 

of an accurate value for Vsp are necessary. In particular, it would be valuable to determine 

what components of the electrical double layer reside within the stagnant solution layer in 

these systems. 

In utilizing elevated temperatures in EMLC for high speed separations, the upper 

limit on temperature was 100 °C, as described in Chapter 4, due to the current EMLC column 
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design. The external reservoir (pictured in Chapter 1, Figure 1) is exposed to the atmosphere. 

Taking temperatures above 100 °C would result in severe evaporative loss of the supporting 

electrolyte in the reservoir. The ability to approach much higher operating temperatures 

(> 250 °C) would not only further reduce analysis times, but potentially extend the breadth of 

analytes that can be separated in an aqueous mobile phase by EMLC. 

As mentioned in Chapter 4, elevated temperature has several effects on the mobile 

phase. First, the solvent viscosity decreases as temperature is elevated resulting in a higher 

maximum flow rate attainable, thus reducing analysis time. Second, there is a decrease in the 

dielectric constant for water with increasing temperature, resulting in water behaving more 

like a hydrophobic solvent with increasing temperature.13 For example, the dielectric 

constant for water is ~80 at 20 °C and decreases to ~33 at 200 °C, which is close to that of 

methanol.14 By making the mobile phase more "methanol-like", hydrophobic analytes (e.g., 

the PAHs examined in Chapter 5) can be analyzed as a result of operating the EMLC column 

under these conditions. 

Attainment of this goal will require a redesigned EMLC column, where the external 

reservoir is closed to the atmosphere and pressurized to the level necessary to prevent boiling 

of the supporting electrolyte. Several possibilities have been explored and the solution will 

likely reside in designing a sealed collar around the top and bottom of the reservoir with an 

extended contact for connection of the reference electrode to the potentiostat. The pressure 

requirement for the reservoir is slightly above the vapor pressure of the mobile phase at the 

maximum temperature reached, for example, 40 bar at 250 °C for water.14 

In the process of examining the use of elevated temperatures in EMLC, the time to 

equilibrate the column to changes in Eapp was also examined. As briefly described in 
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Chapter 4, the elevation of column temperature from 20 to 60 °C resulted in the reduction of 

equilibration time to changes in Eapp by -50%. Further studies are needed to explore this 

phenomenon in more detail. If equilibration times can be significantly reduced, operating the 

EMLC column in a potential gradient format rather than a fixed potential format can further 

improve sample analysis in a manner similar to how mobile phase gradients affect 

separations. 

During the process of examining the thermodynamics of retention in EMLC and 

execution of high speed EMLC separations, an irreversible change in the stationary phase 

was observed. After operation of our EMLC columns at elevated temperatures, retention 

times of the analytes were found to decrease. Characterization of the stationary phase by 

X-ray photoelectron spectroscopy (XPS) after using the columns showed that the oxygen 

content of the stationary phase had increased, as is described in Chapter 4 and in more detail 

in Appendix A. Based on this evidence, it is clear that the stability of the packing must be 

improved in order to fully exploit the advantages of operation at elevated temperatures. One 

possible approach to stabilize the carbon stationary phase is through hydrogen plasma pre-

treated. Recent reports have shown that compared to polished glassy electrodes, 

hydrogenating glassy carbon electrodes stabilizes the electrochemical response.15,16 Similar 

treatment may prove valuable in enhancing the long term performance of PGC and GC 

packings when operated at elevated temperature. Clearly, future studies need to be 

performed to not only stabilize the chromatographic behavior of carbon stationary phases, 

but also to determine the degree of instability. 

In summary, the successful use of temperature as an additional control parameter in 

EMLC has enabled the determination of the thermodynamics of retention of naphthalene 
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disulfonates and the rapid analysis of several aromatic sulfonates. The groundwork has been 

laid for full exploitation of temperature to develop retention rules for EMLC through a 

clearer understanding of the retention mechanism for a wide range of analyte classes. 

Furthermore, the use of elevated temperature and flow conditions will enable the separation 

of analytes not normally achievable on a carbon stationary phase. 
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APPENDIX A. EFFECTS OF ELEVATED TEMPERATURE ON THE 
OXIDATION OF CARBON IN ELECTROCHEMICALLY 

MODULATED LIQUID CHROMATOGRAPHY 

Lisa M. Ponton,1,2 James Anderegg,2 and Marc D. Porter2,3 

During the examination of the thermodynamics of retention in electrochemically 

modulated liquid chromatography (EMLC) and execution of high speed EMLC separations, a 

change in the stationary phase was observed. This irreversible change is a consequence of 

the increased susceptibility to oxidation of both the porous graphitic carbon (PGC) and 

glassy carbon (GC) packings at elevated temperatures. It was found that the retention times 

of the analytes examined decreased during operation of our EMLC columns at elevated 

temperatures and in some cases changed to a degree sufficient to complicate data assessment. 

To assess the basis of this change, when possible, columns were unpacked after usage and 

characterized using X-ray photoelectron spectroscopy (XPS). All columns exhibited an 

increase in the oxygen content after usage, as evident in Table 1. For some columns 

examined by XPS, chromatograms were collected at the same conditions shortly after 

packing the column and shortly before unpacking the column. The results are listed in Table 

1 as the percent loss in retention time (tr) for the analytes. These findings show a correlation 

between the decrease in retention observed and an increase in the percent atomic oxygen 

present on the surface. 

1 Primary researcher and author 
2 Institute of Combinatorial Discovery, Chemistry Department, Iowa State University, and 

Ames Laboratory-U SDOE Ames, IA 50011 
3 Author for correspondence 
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It is important to note that the after completion of the van't Hoff experiments 

presented in Chapter 2, no degradation of retention was observed, as was evidenced by 

comparing chromatograms collected at the same conditions at the start and at the completion 

of the study. Furthermore, the separation of inorganic anions (Chapter 3) and polycyclic 

aromatic hydrocarbons (Chapter 5) also did not show a change in retention after completion 

of the experiments. However, as discussed in Chapter 4, there was a slight change in 

retention throughout the duration of the experiment. This point is brought out in the 

discussion of the data in the chapter. 

To further illustrate the degradation of retention, several detailed examples where this 

behavior was observed follow. The first detailed example is the separation of 1,5- and 2,6-

naphthalenedisulfonate (1,5- and 2,6-NDS, respectively) on a conventional column, i.e., no 

potential control (Conv-GC-4), packed with glassy carbon, as shown in Figure 1. 

Chromatograms A and B were collected on the same day at 20.2 °C and 25.3 °C respectively. 

These two chromatograms were part of a van't Hoff analysis. Using the slope of the van't 

Hoff plot (as described in Chapter 2) the retention times for 1,5- and 2,6-NDS at 22 °C would 

be 1.5 and 4.9 min respectively. Chromatogram C shows the separation of the same analytes 

under the same conditions at 22.3 °C. In the 9 days between the collection of 

Chromatograms A and C, three van't Hoff experiments were conducted, each reaching a 

maximum temperature (Tmax) of 55 °C. As is evident, retention has decreased to 1.1 min for 

1,5-NDS and 2.5 min for 2,6-NDS, correlating to a decrease in retention of 32% and 48%, 

respectively. 

Figure 2 shows the XPS spectra for the as-received GC particles used to pack the 

column used in Figure 1. The top spectrum is the survey spectrum with the high resolution 



www.manaraa.com

127 

spectrum for each component of interest below. The largest peak observed is for carbon, as 

expected. There are also several other interesting features. First, there are measurable 

quantities of O, Ca, and F on the surface. The calcium and fluorine are attributed to the 

manufacturing process. With respect to carbon, this sample of GC showed 6.6 atomic % O 

prior to use. After completion of the above described chromatographic experiments, the 

carbon was unpacked from the column as re-examined with XPS. The results in Figure 3 

show that after use at elevated temperatures the oxygen content has risen to 8.8 % with 

respect to carbon. Several of the other observed elements are traceable to the analyte, 

supporting electrolytes, and mobile phases employed during the van't Hoff experiments. 

Figure 4 shows the separation of several monosubstituted benzene sulfonates with an 

EMLC column packed with GC (EMLC-GC-8). The fronting observed in the 

chromatograms is attributed to a small void in the column packing. Both Chromatograms A 

and B were collected under the same conditions at 25.0 °C with an applied potential of 

+200 mV. Chromatogram B was collected 11 days and 2 van't Hoff analyses (Tmax = 60 °C) 

after Chromatogram A. As is evident, retention has decreased from 1.0 min to 0.7 min for 

methylbenzene sulfonate (MBS) and 1.8 min to 1.0 min for chlorobenzene sulfonate (CBS). 

These reductions in retention time correlate to a decrease in retention of 30 % for MBS and 

44 % for CBS. Benzene sulfonate (BS) was not examined in Chromatogram B due to the 

decreased retention times. The GC used in these experiments had been pre-washed with 

sulfuric acid to remove the calcium and fluorine observed in the XPS spectra shown in 

Figure 2. Figure 5 shows the XPS spectra for the "cleaned" GC prior to use in the EMLC 

column. The oxygen content in this case is 2.1 %. After chromatographic experiments, 

Figure 6, there is a marked increase in the oxygen content to 9.4 %. 
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This phenomenon was not isolated to GC; it was also observed for PGC. Figure 7 

shows the chromatograms for the monosubstituted benzene sulfonates on an EMLC column 

packed with PGC (EMLC-PGC-16). All three chromatograms were collected at the same 

conditions at room temperature (21 °C) and +100 mV. Chromatogram A was collected prior 

to a high speed experiment, similar to that described in Chapter 3. Chromatogram B was 

collected five days later after extended use of the column at 100°C. Chromatogram C was 

collected three days later, only being flushed with solvents at room temperature during that 

time. CBS decreased in retention from 20.9 to 19.3 to 16.7 min, an overall 20 % decrease in 

retention. MBS and BS both exhibited an 18 and 14 % decrease in retention respectively. 

Figure 8 shows the XPS spectra for as received PGC. PGC is very clean with only 0.1 % O 

measurable. After use, the PGC showed an oxygen content of 2.0 %, Figure 9. 

Finally, Table 2 consists of data examining the relative effect of the components of 

the mobile phase through a batch experiment. A small amount of PGC (-0.5 g) was placed 

in a vial with various mobile phase components for 5 days at 60 °C. After this treatment the 

samples were characterized by XPS. These results show that all mobile phase compositions 

examined oxidize the surface to some degree, with the exception of pure water. The increase 

due to acetonitrile and methanol, however, is minimal. Introduction of electrolyte 

significantly increased the oxygen content in all cases. 

Similar chromatographic evidence for the redox activity of PGC has been 

documented by other authors.1"3 Shibukawa et al.2 describe using the redox property of PGC 

to their advantage in an on-column derivatization method. They found that by introduction 

of a reducing agent, this redox activity could be manipulated between having oxidative 

capability to reductive capability for some metal complexes. In another example, Tomkvist 
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et al.3 documented the chromatographic impact of passing oxidizing agents and reducing 

agents through the column and found evidence for a slow oxidation of PGC with time. 

Based on the above, it is apparent that retention can be profoundly impacted by the 

changing presence of surface oxygen throughout the duration of elevated temperature 

experiments. Therefore, the stability of the packing needs to be improved in order to fully 

exploit the advantages of operation at elevated temperatures. One possible approach is pre-

treating the carbon stationary phase in a hydrogen plasma. Recent reports have shown that 

hydrogenating glassy carbon electrodes stabilizes their electrochemical response in 

comparison to polished electrodes.4,5 Similar treatment may prove valuable in enhancing the 

long term performance of the PGC and GC packing when operated at elevated temperature. 

Clearly future studies need to be performed to not only stabilize the chromatographic 

behavior of carbon stationary phases, but to determine the degree of instability. 
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Table 1. Chromatographic evidence for oxidation of PGC as 
a result of elevated temperature. 

Carbon Sample %o % loss in t, 
Unused GC (sieved) 6.6 

Conv-GC-1 12.5 14% 
Conv-GC-2 3.8 
Conv-GC-4 8.8 32 - 48 % 

Unused GC (washed with H2SO4) 2.1 

EMLC-GC-2 4.1 39-51 % 
EMLC-GC-3 6.5 
EMLC-GC-4 10.0 
EMLC-GC-5 9.5 5-10  % 
EMLC-GC-6 11.1 12 - 32 % 
EMLC-GC-7 5.9 
EMLC-GC-8 9.4 30-44% 

As received PGC 0.1 

EMLC-PGC-16 2.0 14-20% 
EMLC-PGC-19 0.9 7-14% 
EMLC-PGC-20 0.5 
EMLC-PGC-21 0.7 
EMLC-PGC-23 0.4 
EMLC-PGC-24 0.4 
EMLC-PGC-25 0.3 
EMLC-PGC-27 1.8 
EMLC-PGC-28 0.8 
EMLC-PGC-29 0.9 



www.manaraa.com

131 

1,5-NDS 

2,6-NDS 

1,5-NDS 

2,6-NDS 

1,5-NDS 

2,6-NDS 

Time (min) 

Figure 1. Chromatograms for a mixture of 1,5- and 2,6-NDS with column Conv-GC-4. The 
mobile phase was composed of 95 mM lithium perchlorate in 95:5 v:v water:acetonitrile. 
The flow rate was 0.5 mL/min. Chromatograms A and B were collected on the same day at 
20.2 °C and 25.3 °C respectively. Chromatogram C was collected 9 days later at 22.3 °C 
after 3 van't Hoff analyses (Tmax = 55.0 °C). 
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Figure 2. XPS data for sieved GC used to pack column used in Figure 1. 
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Figure 3. XPS data for GC after use in column from in Figure 1. 
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Figure 4. Chromatograms for a mixture of BS, MBS, and CBS with column EMLC-GC-8. 
The mobile phase was composed of 5 mM sodium hexafluorophosphate in 95:5 v:v 
water:acetonitrile. The flow rate was 0.5 mL/min. Both chromatograms were collected at a 
temperature of 25.0 °C and an applied potential of +200 mV vs. Ag/AgCl (sat'd NaCl). 
Chromatogram B was collected 11 days later after 2 van't Hoff analyses (Tmax = 60.0 °C). 
The observed fronting is due to a small void in the column packing. 
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Figure 5. XPS data for cleaned GC used to pack column used in Figure 4. 
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Figure 6. XPS data for GC after use in column from Figure 4. 
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Figure 7. Chromatograms for a mixture of BS, MBS, and CBS with column EMLC-PGC-
16. The mobile phase was composed of 100 mM lithium perchlorate in 95:5 v:v 
water:acetonitrile. The flow rate was 0.5 mL/min. All chromatograms were collected at 
room temperature (21 °C) and an applied potential of+100 mV vs. Ag/AgCl (sat'd NaCl). 
Chromatogram B was collected 5 days later than Chromatogram A after taking the column to 
100 °C for high speed EMLC. Chromatogram C was collected another 3 days later after 
flushing the column at room temperature. 
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Figure 8. XPS data for as received PGC used to pack column used in Figure 7. 
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Figure 9. XPS data for PGC after use in column from Figure 7. 
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Table 2. Batch oxidation of PGC. 

Solvent %0 
as received PGC 0 
dried PGC 0.08 

water 0.1 
acetonitrile 0.6 
95:5 water:acetonitrile 0.45 
methanol 0.59 

0.1 M LiC104 in water 1.2 
0.1 M LiClC^in actetonitrile 1.19 
0.1 M LiClO^in 95:5 water:acetonitrile 1.56 
0.1 M LiClCMn 50:50 water:acetonitrile 7.71 

0.1 M NaPFe in water 1.05 
0.1 M NaPFô in 75:25 water:acetonitrile 1.38 

0.1 M NaF in water 2.1 
0.1 M NaF in 75:25 watenacetonitrile 2.14 

0.1 M TBACIO4* in acetonitrile 1.04 

TBACIO4 is tetrabutylammonium perchlorate 
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APPENDIX B. ARCHIVING TRACE ORGANIC CONTAMINANTS IN 
SPACECRAFT WATER 

A paper published by SAE International 

Lisa M. Ponton,2,3 Daniel Gazda,3 Robert J. Lipert,3 James S. Fritz,3 and Marc D. Porter3,5 

Jeff Rutz,4 Paul Mudgett,4 Dawn Dungan,4 and John Schultz4 

Abstract 

One of the long-standing concerns in space exploration is the presence of trace 

organic contaminants in recycled spacecraft water supplies. At present, water samples on the 

International Space Station (ISS) are collected at regular intervals, stored in Teflon™-lined 

containers, and returned to Earth for characterization. This approach, while effective in 

defining water quality, has several notable problems. First, this method of archiving removes 

a significant volume of the ISS water supply. Second, the archived water consumes valuable 

cargo space in returning Shuttle and Soyuz vehicles. Third, the organic contaminants present 

in the collected samples may degrade upon extended storage. The latter problem clearly 

compromises sample integrity. Upon return to Earth, sample degradation is minimized by 

refrigeration. Due to present resource constraints, however, refrigeration is not a viable 

option in space. 

This paper describes the first findings from an investigation of solid phase extraction 

(SPE) as an effective approach to sample archiving. With SPE, the organic contaminants in 

1 Reprinted with permission from SAE paper 2003-01-2408 © 2003 SAE International. 
2 Primary researcher and author 
3 Microanalytical Instrumentation Center, Chemistry Department, Iowa State University, and 

Ames Laboratory-USDOE Ames, IA 50011 
4 Wyle Laboratories, Houston, TX 77058 
5 Author for correspondence 
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the spacecraft water can be trapped and concentrated on a thin membrane or other extraction 

medium, with the resulting effluent recycled back into the water supply as opposed to being 

stored and returned to Earth. This approach, therefore, has the potential to: (1) dramatically 

reduce the amount of water removed for sampling, (2) minimize the stowage npeded to return 

the samples to Earth, and (3) mitigate sample degradation. Results from an evaluation of this 

concept using synthetic spacecraft water and a range of extraction materials are described, 

along with the findings from a KC-135 flight evaluation of the effectiveness of and 
» 

experimental challenges in implementing this concept in microgravity. Plans for the next 

generation of experiments, based on these results, are also briefly discussed. 

Introduction 

To date, on-board equipment for monitoring spacecraft water quality has been 

developed for determining total organic carbon,1 pH, conductivity, and bacteria levels. More 

in-depth characterizations rely on archival sampling. For the Shuttle-Mir Program, 100-800 

mL samples of potable water and 25-700 mL samples of humidity condensate were 

periodically collected and returned to Earth on Shuttle and Soyuz vehicles.2,3 Over 40 

potable water samples and 30 condensate samples were returned from Mir during this 

program.4 These samples represented a significant amount of return vehicle payload capacity 

(a combined mass of 36.4 kg) and constituted a considerable portion of the Mir water supply 

(the equivalent of 10 person-days consumption). 

The sampling program for the International Space Station (ISS) water system also 

exemplifies the necessity for an improved approach to archiving. Since the beginning of this 
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program in 2000 (Expeditions 1-5), NASA has collected 66 samples (25 potable water 

samples, 14 stored ground-supplied water samples, 4 filter reactor effluent samples, and 23 

humidity condensate samples), each at a volume of -800 mL.5,6 The importance for an 

alternative archival strategy is further magnified when considering the need to sample the 

contingency water supplied to the ISS by Shuttle missions. To date, 49 contingency water 

containers transferred from the Shuttle to the ISS had an average volume of 116 mL removed 

from each container for archiving purposes.7 In total, this process has removed 58.5 L from 

the ISS. As of February 10, 2003, the inventoried volume of water on the ISS totaled 986 L, 

indicating that 5.9% of the water was employed for archival sampling. 

In addition to removing a significant volume of water from the ISS, this traditional 

approach to sample archiving raises concerns about sample integrity due to possible 

degradation and contamination during storage, transportation, and handling. For the ISS, 

archived samples are returned to Earth every two to six months, as dictated by Shuttle or 

Soyuz launch schedules. If, however, an efficient means to return only the chemical 

contaminants, concentrated and stabilized from a defined volume of water, can be devised, 

then the complications presented by sample archiving would be greatly reduced. 

Solid phase extraction (SPE) is an effective means to remove and concentrate 

contaminants from water for storage and analysis upon return to the analytical laboratory.8"10 

In its simplest form, SPE consists of loosely-packed extractant particles, similar to those 

employed in liquid chromatography, that are loaded into a small column or cartridge. Resin-

loaded membrane disks that can be used in conventional filtration systems have also been 

developed and provide a more effective and compact means of extraction.8 In each case, the 
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analytes are extracted by either pushing the sample through the extraction media using a 

syringe or pulling the sample through the media with vacuum. After extraction, the 

cartridges or disks can then be either archived or immediately processed for water quality 

assessment. Importantly, past studies have shown that samples archived by SP^ are stable 

for extended periods of storage.10"12 

The long-range goal of the work described herein is the development of a 

methodology using SPE for archiving organic contaminants in spacecraft water. Examples of 

the contaminants found in spacecraft water are listed in Table 1, along with their respective 

octanol-water partition constants (KoW), which is a measure of hydrophobicity.13"15 This list, 

while not exhaustive, is representative of the classes of compounds (hydrophobic, 

hydrophilic, neutral, charged, etc.) identified in earlier characterizations of archived 

spacecraft water,16'17 and will be used to prepare synthetic water samples for development of 

a SPE-based archival method. If effective, this approach would not only significantly 

decrease the amount of water removed from the ISS system, but also dramatically lower the 

burden on return vehicle payload capacity. 

Three important conditions must be met in order for this strategy to be successful. 

First, the extraction must be effective in the removal of water system contaminants. Second, 

the archival contaminants must be stable for up to six months when impregnated in the 

extraction material until returned to Earth for analysis. Third, procedures for extraction must 

be easily and rapidly carried out by crewmembers. This final condition is necessary in order 

to minimize the time required to complete the archiving procedure. 
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Table 1. Test compounds for SPE Development8 and their respective octanol-
water partition constants ( Kow)" 

Acetone 
-0.24e 

Diethyl phthalate 
2.51e 

Methylamine 
-0.57d 

Acetophenone 
1.63e 

Dodecanoic acid 
4.6e 

1 -Methyl-2-pyrrolidinone 
NA8 

Benzyl alcohol 
1.05e 

Di(ethylene glycol) 
butyl ether 0.40d 

Nonadecane 
NA8 

n-Butanol 
0.84e 

n-Ethyl-p-toluene 
sulfonamide NA8 

Squalene 
NAB 

Ethylene glycol 
butyl ether 

NAg 

Formaldehyde 
0.35e 

1-Tetradecanol 
NA8 

Propylene glycol 
NA8 

Hexanoic acid 
1.92e 

Methanol 
-0.74e 

3-t-Butylphenol 
~3c'f 

Iodoform 
~2e,f 

Ethanol 
-0.30e 

Caprolactam 
-0.19d 

Indole 
2.14d 

Isopropanol 
0.05e 

aThese compounds, which are only a small portion of the organic contaminants 
found in spacecraft water samples, are representative of the many chemical 
classes of the contaminants.8 

bThe degree of hydrophobicity is described by the octanol-water partition 
coefficient (KoW) and is defined as the equilibrium ratio of the concentration of 
the analyte in octanol and the concentration of the analyte in water. 
cFromref.l3. 
dFrom ref.14. 
eFrom ref.15. 
Value approximated based on similar compound. 
^NA=Value not available. 
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This paper reports on the first stage of an ongoing investigation into the use of 

Empore™ extraction membranes as a media for potentially meeting the above criteria. This 

stage of the investigation had three phases. First, SDB-XC Empore™ extraction membranes 

(described in Table 2) were used with little deviation from manufacturer preparation 

recommendations to establish a baseline methodology for assessing the effects of 

microgravity on SPE performance. Based on the literature,10 this type of membrane (SDB-

XC) proved effective in the uptake of several polar organic compounds, such as those found 

in past samples of spacecraft water.16,17 Second, this methodology was employed for 

extraction of a synthetic humidity condensate sample on a recent KC-135 microgravity flight 

to assess the potential implementation of SPE in a microgravity environment. Finally, to 

assess the broad-based potential of employing SPE as an effective archival methodology, the 

performance of four other compositionally different membrane materials was briefly 

investigated. 

Experimental Methods 

Reagents and Materials. Hexanoic acid, acetophenone, benzyl alcohol, indole, 3-t-

butylphenol, caprolactam, n-ethyl-p-toluene sulfonamide, diethyl phthalate, di(ethylene 

glycol) butyl ether, l-methyl-2-pyrrolidinone, and ethylene glycol butyl ether were obtained 

from Aldrich Chemical (Milwaukee, WI). Ethyl acetate, acetone, and isopropyl alcohol were 

purchased from Fisher Scientific (Pittsburgh, PA). The synthetic water samples were 

prepared using Milli-Q water (Millipore, Bedford, MA) and their make up and use are 
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described below. Teflon™ bags (1000 mL) were obtained from American Fluoroseal 

Corporation (Gaithersburg, MD) and were fitted with either reflux valves (B. Braun Medical, 

Bethlehem, PA) or Luer check valves (Qosina, Edgewood, NY) equipped with a tethered cap 

(Qosina). These bags are currently being used in ISS archival sampling. The 3M Empore™ 

extraction disks (Fisher Scientific), listed in Table 2, were cut to 13 mm diameters in order to 

fit into conventional filter cartridges (Fisher Scientific). Caps used to seal the filter cartridges 

were obtained from Qosina. 

Gas Chromatography/Mass Spectrometry (GC/MS). Analysis of the resulting 

eluents after SPE archiving was performed on one of two Agilent Technologies Model 6890 

Gas Chromatographs, each equipped with a Model 5973 Mass Selective Detector. One 

instrument, located at Iowa State University in Ames, Iowa, had a Hewlett Packard 5MS 

column (crosslinked 5% phenyl-methylpolysiloxane), 30 m x 0.25 mm x 0.25 pm film 

thickness. The Ames instrument was used in all three phases of this investigation. The 

second instrument located at the Johnson Space Center (JSC) had a J&W DB-5.625 column 

(equivalent to 5% phenyl-methylpolysiloxane), 50 m x 0.20 mm x 0.33 pm film thickness. 

The JSC instrument was employed in Phase 2 for the analysis of the KC-135 flight samples 

immediately upon completion of the flight experiments. In both cases, the splitless injection 

volume was 1 |aL. 

Water Samples. Phase 1: Preliminary Ground-Based Experiments. The synthetic 

water sample used for pre-flight ground experiments contained six organic compounds often 

observed in the humidity condensate from the ISS or other types of spacecraft. These 

compounds, all at a concentration of 10 ppm, were: hexanoic acid, acetophenone, benzyl 
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Functional Group Retention Mechanism 
Pore 
Size 
(A) 

Average 
Particle 

Size 
(mm) 

Surface 
Area 
(m2/g) 

pH 
range 

Advantages 

SDB-XC 
Poly(styrene 

divinyl benzene) 
Reversed Phase 80 15 350 1-14 

Retains aliphatic and 
aromatic compounds 

SDB-
RPS 

Poly(styrene 
divinyl benzene) 

sulfonate 

Reversed Phase and 
Cation Exchange 

80 15 350 1-14 
Same as SDB-XC plus 

organic analytes with polar 
character 

C18-HD 
Silica with 
octadecyl 

(endcapped) 
Strong Reversed Phase 60 12 NA 2-7.5 

Approved for use with 
numerous EPA Methods 

C8-HD 
Silica with octyl 

(endcapped) 
Moderate Reversed 

Phase 
60 12 NA 2-7.5 

Approved for use with 
numerous EPA Methods 

MPC-HD 
Silica with octyl 

and benzene 
sulfonic acid 

Moderate Reversed 
Phase and Cation 

Exchange 
60 NA NA 2-7.5 Ion exchange 0.03 mEq/g 
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alcohol, indole, 3-/-butylphenol, and caprolactam. Although spacecraft water contains 

organic constituents at a much lower concentration, a higher concentration was employed in 

order to enable the ability to carry out both the Phase 1 and Phase 2 experiment within the 

time span of several parabolas of a KC-135 flight (20-40 s each). Future studies will be 

extended to include concentrations. 

Phase 2: KC-135 Flieht Experiments. The flight experiments were performed using a 

synthetic water sample containing the same six organic compounds used in Phase 1. The 

concentration of each analyte was 10 ppm with the exception of hexanoic acid, which was 

increased to 20 ppm due to the low detector sensitivity for hexanoic acid. This sample was 

stored in a 1-L Teflon™ bag during the KC-135 flight. Prior to flight, the sample was 

refrigerated. 

Phase 3: Ground-Based Performance of Alternative Membrane Materials. Two 

synthetic water samples were prepared with -20 ppm concentrations for each analyte and 

used in testing the extraction characteristics of the membranes listed in Table 2. The first 

sample consisted of indole, caprolactam, hexanoic acid, acetophenone, benzyl alcohol, 3-t-

butylphenol, and w-ethyl-p-toluene sulfonamide. The second sample consisted of diethyl 

phthalate, di(ethylene glycol) butyl ether, 1 -methyl-2-pyrrolidinone, and ethylene glycol butyl 

ether. 

SPE Extraction Methods. Phase 1: Preliminary Ground-Based Experiments. The 

SDB-XC extraction membranes were cut to a 13 mm diameter and loaded into filter 

cartridges (shown in Figure 1), wetted with 1-mL acetone and 2-mL isopropyl alcohol, and 

used immediately. Triplicate extractions were performed with either 5.0 or 10.0 mL sample 
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Figure 1. a. Empore™ extraction membrane and separated filter cartridge, b. Coupled filter 
cartridge containing Empore™ extraction membrane. 
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volumes. The extracts were then immediately eluted off the disks with 5.0 mL of ethyl 

acetate. The resulting eluent was analyzed by GC/MS. 

Phase 2: KC-135 Flisht Experiments. The same extraction procedure was performed 

during the KC-135 flight with the cartridges loaded with SDB-XC extraction membranes. 

The membranes were wetted with 1-mL acetone and 2-mL isopropyl alcohol, and then 

capped and stowed one day prior to flight. This deviation from wetting immediately prior to 

use, reflects NASA safety regulations against the use of organic solvents during KC-135 

flights. The membranes were still visibly wetted when used in-flight. Ten replicate 

extractions were performed using both 5- and 10-mL sample volumes, with the effluent 

collected in a 1-L waste bag. These cartridges were then capped (Figure 2) and stowed for 

ground-based laboratory analysis. Half of the archived samples were eluted upon landing and 

the other half of the archived samples were sealed in plastic bags for one week and then 

eluted as part of the effort to characterize the stability of the analytes during storage on Earth. 

Elution employed 4.0 L of ethyl acetate, a level reflecting availability of vial sizes. The 

resulting eluents were analyzed by GC/MS. A companion set of experiments was performed 

in the laboratory as a control in order to assess any effects of microgravity on extraction 

efficiency. 

Phase 3: Ground-Based Performance of Alternative Membrane Materials. The five 

Empore™ disks examined (SDB-XC, SDB-RPS, C8-HD, C18-HD, and MPC-HD) are 

described in Table 2, along with their respective characteristics as extraction media. Two 

sets of tests were conducted. The first set employed membranes wetted first with 1 -mL of 

acetone and then with 2-mL of isopropyl alcohol, reflecting vendor protocols. The second set 
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Figure 2. Capped filter cartridge containing Empore™ extraction membrane. 
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used "as received" membranes and was carried out to assess whether membrane wetting was 

a requisite to extraction performance. Small (5.0 mL) aliquots of each water sample were 

passed through the membranes. The extracted compounds were then eluted off the 

membrane with 5.0 mL of ethyl acetate and analyzed by GC/MS. 

Results and Discussion 

Phase 1: Preliminary Ground-Based Experiments. The Empore™ SDB-XC 

extraction membranes were used as a starting point in the development of a fast and efficient 

SPE method for sample archiving and in the establishment of a baseline from which to assess 

any effects of microgravity on SPE extraction performance. These membranes were selected 

because reversed phase medium has characterizations that should prove effective in 

extracting both aliphatic and aromatic compounds from water. Of the compounds listed in 

Table 1, the six chosen have a range of chemical characteristics (listed in order of decreasing 

hydrophobicity): 3-/-butylphenol, indole, hexanoic acid, acetophenone, benzyl alcohol, and 

caprolactam. Two sample volumes, 5.0 and 10.0 mL, of the synthetic humidity condensate 

water were employed, with extractions performed in triplicate. The percent recoveries of 

each compound in the eluent from these experiments are given in Table 3. For the 5-mL 

sample volume experiments, hexanoic acid, acetophenone, 3-f-butylphenol, and indole 

exhibited the best overall extraction efficiencies and low percent relative standard deviation 

(%RSD). For the 10-mL sample volume experiments, the extraction efficiencies of hexanoic 

acid and benzyl alcohol, however, were considerably lower. Caprolactam was not extracted 

in sufficient quantities to be detected by the Ames GC/MS system for either the 5- or 10-mL 
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Table 3. Pre-Flight Ground Results from SPE Cartridges.® 

5 mL Sample Volume Hex" Acetb Benzb Indb But" Cap 
% Recovery 88.5 102.2 55.1 93.3 80.9 NDC 

Error 6.3 5.7 9.9 4.2 4.8 
% RSD 7.2 5.6 18.0 4.5 5.9 

10 mL Sample Volume 
% Recovery 58.4 96.8 27.8 86.9 77.6 NDC 

Error 10.0 19.3 4.8 18.3 15.4 
% RSD 17.1 19.9 17.3 21.1 19.9 

"Data generated at Iowa State University. 

bHex=Hexanoic Acid, Acet=Acetophenone, Benz=Benzyl Alcohol, 
Ind=Indole, But=3 -f-Butylphenol, Cap=Caprolactam. 

°ND-Not Detected 
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experiments. Despite the less than ideal recoveries for this test mixture, the results were 

judged to be sufficiently reproducible that this combination of extraction media and synthetic 

space water could be reliably employed in a first evaluation of SPE as a microgravity 

archiving technique. The next section describes the finding from these tests, with preliminary 

efforts to improve extraction efficiencies by the use of different SPE media briefly detailed in 

the last section of this paper. 

Phase 2: KC-135 Flight Experiments. Based on the high recoveries for 

acetophenone, indole, and 3-f-butylphenol in the preliminary ground-based experiments and 

the precisions for the extraction-elution of all five retained test analytes, the same 

sample-membrane combination was used in the KC-135 microgravity performance 

assessment. For comparison purposes, a companion set of extractions and analyses were 

performed using the same synthetic water sample immediately after flight. Tables 4 and 5 

contain the results of the GC/MS analyses of the ethyl acetate extracts from the flight and 

ground based experiments. Each result is the average of five replicates. The standard 

deviation and percent relative standard deviation (%RSD) are also listed. 

Table 4 shows the results for the KC-135 flight and ground-based extractions with 

analyte elution and GC/MS analysis performed upon landing (i.e., elution within a few hours 

after the extractions in KC-135 microgravity simulations). The results show that the 

recoveries for the flight and ground extractions are in strong agreement. For example, the 

extraction of 3-/-butylphenol differs by less than 3% regardless of sample volume or location 

(KC-135 flight extraction vs. ground-based extraction). Moreover, this analyte exhibited a 

%RSD as low as 1.6. The precision for the extraction-elution of caprolactam was also 
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Table 4. Results from SDB-XC Cartridges Eluted Upon Landing.® 

Flight Results 
5 mL Sample Volume Hex" Acetb Benzb Indb But" Cap" 

% Recovery 187.9 77.2 34.8 76.3 89.1 63.5 
Error 7.8 3.0 4.5 3.5 3.3 0.9 
% RSD 4.2 3.9 12.8 4.6 3.7 1.4 

10 mL Sample Volume 
% Recovery 152.1 76.0 23.4 74.0 87.0 31.3 
Error 8.6 2.1 2.4 1.9 1.9 0.6 
% RSD 5.6 2.7 10.4 2.6 2.1 1.9 

Ground Results 
5 mL Sample Volume 

% Recovery 185.9 79.7 38.9 75.8 88.9 63.6 
Error 8.7 2.2 3.9 1.9 1.4 1.2 
% RSD 4.7 2.7 9.9 2.5 1.6 1.8 

10 mL Sample Volume 
% Recovery 143.0 77.3 23.9 70.4 86.3 31.7 
Error 5.1 3.0 3.1 3.7 2.7 0.5 
% RSD 3.5 3.9 12.8 5.3 3.1 1.7 

"Data generated at Johnson Space Center. The analysis system at the 
Johnson Space Center was able to detect lower concentrations of 
Caprolactam than the analysis system at Iowa State University. 

bHex=Hexanoic Acid, Acet=Acetophenone, Benz=Benzyl Alcohol, 
Ind=Indole, But=3 -f-Butylphenol, Cap=Caprolactam. 
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relatively high. However, the same amount of caprolactam was recovered for both the 5- and 

10-mL sample volumes. This discrepancy, though to a lesser extent, is also evident for 

several of the other compounds, suggesting that possible overloading of the membranes needs 

to be examined. Nevertheless, the excellent agreement between the flight and ground-based 

extractions strongly support the potential use of this strategy as an archival method in the 

microgravity environment. 

The second goal of the KC-135 flight experiment was to initiate a ground-based examination 

of analyte stability during archival storage. Table 5 shows the percent recoveries for the 

experiments where elution was delayed until after a one-week storage of both in-flight and 

ground based extractions. Again, because the KC-135 flight- and ground-based extractions 

have similar recoveries, the results indicate that the archiving procedure is not dependent on 

gravity. However, comparing the recoveries in Table 4 to those in Table 5, there is clear 

evidence for analyte loss over the one-week ground-based storage period. Inspection 

revealed that the membranes were noticeably drier after storage, suggesting that sample 

evaporation due to poorly sealed cartridges may be a problem. The larger %RSD values for 

the stored samples support this assertion. For example, 3-/-butylphenol has an overall 11.1 

%RSD, which is considerably higher than the 2.9 %RSD observed in the samples eluted 

immediately post flight (Table 4). To correct this problem, the archival hardware will be 

refitted with a more airtight capping system that will also reduce the headspace in the 

cartridge holding the membrane. Further work will assess ground-based storage stability over 

extended times (i.e., more than six months), with the goal to carry out paralleled studies on 

ISS as its capacity develops with the addition of new modules. 
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Table 5. Results from SDB-XC Cartridges Eluted 1 Week After Landing.8 

Flight Results 
5 mL Sample Volume Hex" Acetb Benz" Indb But" Cap" 

% Recovery 27.0 44.3 19.3 51.2 64.0 NDC 

Error 1.8 4.9 4.9 7.7 7.6 
% RSD 6.6 11.0 25.2 15.0 11.9 

JO mL Sample Volume 
% Recovery 19.8 45.8 12.0 49.1 63.3 NDC 

Error 5.2 7.1 3.6 6.3 8.2 
% RSD 26.4 15.4 30.0 12.9 12.9 

Ground Results 
5 mL Sample Volume 

% Recovery 28.2 44.7 19.3 53.3 62.4 NDC 

Error 2.6 3.5 3.8 4.9 6.8 
% RSD 9.2 7.8 19.9 9.3 10.9 

10 mL Sample Volume 
% Recovery 29.3 45.7 12.2 52.6 66.5 NDC 

Error 6.2 4.7 1.9 5.6 7.6 
% RSD 21.1 10.2 15.1 10.6 11.4 

"Data generated at Iowa State University. 

bHex=Hexanoic Acid, Acet=Acetophenone, Benz=Benzyl Alcohol, 
Ind-Indole, But=3-/-Butylphenol, Cap=Caprolactam. 

°ND=Not Detected 
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As to the inability to obtain 100% recoveries for the six organic analytes, we note that 

methods adopted by regulating agencies like the EPA have recoveries similar to those 

reported in Table 3. Using EPA Method 62,19 a multilaboratory study yielded recoveries 

ranging from 36% for phenol to 184% for 3,3'-dichlorobenzidine. Our findings are, 

therefore, reasonably in-line with those for recently mandated protocols. Nevertheless, a 

more detailed investigation of the types of extraction media available (Table 2) is warranted 

to ensure that all possible forms of contaminants can be reliably extracted. As Table 1 

shows, the contaminants span a wide range of chemical properties (i.e., hydrophobic, 

hydrophilic, neutral, charged, etc.). It is therefore of interest to examine the effectiveness of 

membranes and other materials with differing extraction properties. A first step in this 

direction is a screening of the available Empore™ extraction membranes, and our 

preliminary findings to this end are described in the next section. 

Phase 3: Ground-Based Performance of Alternative Membrane Materials. Since 

there is a wide range of compositionally different SPE materials readily available, it may be 

possible to develop an archival system that can effectively extract a large majority of space 

water contaminants. Table 6 shows the results from a preliminary screening of several 

Empore™ extraction membranes. The membrane characteristics are described in Table 2. 

Because minimized membrane preparation is desired, these tests were conducted employing 

both "as received" membranes and those prepared following the above wetting procedure. 

Relative peak heights were used to compare the extraction efficiency with respect to 

membrane types and pretreatments by normalizing the absolute peak height for each 

compound to that of the least efficient membrane (i.e., the membrane with the lowest 
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Table 6. Relative Peak Heights for various Empore™ Membranes.® 

"As Received" Membranes 
Relative Peak Height" 

SDB- SDB- C18- C8- MPC-
Compound XC RPS HD HD HD 
Indole 3.2 7.6 1.4 1.1 1.9 
Caprolactam C C C C C 

Hexanoic acid C 3.0 C c 2.1 
Acetophenone 5.8 9.8 4.3 3.7 5.7 
Benzyl alcohol _C C C C C 

3-f-Butylphenol 1.5 2.6 2.1 1.9 2.3 
M-Ethyl-p-toluene sulfonamide 1.0 23.4 4.2 2.4 18.9 
Diethyl phthalate 2.7 3.8 3.6 3.3 3.0 
Di(ethylene glycol) butyl ether C C C C C 

1 -Methyl-2-pyrrolidinone C C C C C 

Ethylene glycol butyl ether c c c c c 

"Work completed at Iowa State University. 

bThe peak heights for each compound are normalized to the lowest peak height obtained. 

"Compound not detected. 

Wetted Membranes 
Relative Peak Height 

SDB- SDB- C18- C8- MPC-
XC RPS HD HD HD 
6.0 6.2 2.1 2.3 1.0 
C C C C C 

5.3 c 1.0 1.0 c 

6.4 6.0 1.7 1.7 1.0 
1.0 c C C c 

1.7 1.9 1.8 1.0 1.0 
22.8 24.0 20.0 13.3 11.6 
3.3 3.3 3.1 1.0 2.5 
_C C C C C 

_C c c c C 

_c _c c c c 



www.manaraa.com

161 

peak height for the compound). For example, indole yielded its lowest effective recovery on 

the wetted MPC-HD membrane; therefore, all the peak heights for indole were normalized to 

this value. Comparison of the relative peak heights for indole reveals that the "as received" 

SDB-RPS membrane gave the best performance. 

Interestingly, the results for the "as received" membranes compared favorably to those 

for the wetted membranes, and for SDB-RPS and MPC-HD were better. The "as received" 

SDB-RPS membrane proved the most efficient of those examined. The other four types of 

membranes had mixed performance after wetting, and functioned less effectively than the "as 

received" SDB-RPS membrane. This finding is particularly encouraging because the use of 

organic solvents is prohibited on the ISS. Any membrane preparation will need to be 

completed prior to launch, and storage time may be up to six months before use. Ongoing 

experiments are examining the reproducibility of employing the SDB-RPS membrane 

without wetting as a component in an archiving method. 

Table 6 also shows that several of the compounds examined were not extracted by any 

one membrane. Moreover, there are other contaminants in spacecraft water (e.g., methanol 

and ethanol), which would not be concentrated based on the chemical properties of these 

extraction materials. Therefore, the screening of extraction media will be expanded to 

include other types of SPE materials. Since the media examined to date were largely 

reversed phase (non-polar) in nature, the search will include normal phase media (polar, e.g., 

Florisil, magnesium silicate), zeolite adsorbants (e.g. Silicalite), as well as other ion-

exchange materials. 
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Conclusions 

The results from these preliminary experiments demonstrate the potential for the 

development of a SPE-based sample archiving method for spacecraft water by using a small 

array of SPE materials. The flight and ground-based extractions for KC-135 experiments 

yielded similar recoveries, indicating that the performance of SPE as an archival method is 

not gravity dependent. Furthermore, comparison of results for samples eluted upon KC-135 

landing to those done one week later indicate clear evidence for analyte loss, likely due to 

sample evaporation during the one-week storage period. Subsequent ground-based 

experiments with alternate membranes showed promising results for an off-the-shelf 

membrane used "as-received" versus wetted. Near-term objectives for the development of 

this method include: identifying extraction media that effectively trap and stabilize more of 

the compounds listed in Table 1, improving hardware to limit sample evaporation without the 

use of refrigeration, and extending storage stability studies to times comparable to that 

expected for storage on the ISS. Studies are therefore ongoing to examine different 

extraction materials and effective storage conditions. Successful implementation of such a 

SPE sample archiving method would reduce the amount of water removed from the ISS 

water system and lower the payload and storage space needed on return vehicles. 
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